Conference: Zassenhaus Groups and Friends Conference 2024

会议:2024 年 Zassenhaus 团体和朋友会议

基本信息

  • 批准号:
    2346615
  • 负责人:
  • 金额:
    $ 1.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

This award supports participation in the 2024 Zassenhaus Groups and Friends Conference which will be held at Texas State University in San Marcos, TX. It will take place on the campus of the university from noon of Friday, May 31, 2024, to the early afternoon on Sunday, June 2, 2024. It is expected that about 40 researchers will attend the conference, many of whom will give a talk. The Zassenhaus Groups and Friends Conference, formerly known as Zassenhaus Group Theory Conference, is a series of yearly conferences that has served the mathematical community since its inception in the 1960s. The speakers are expected to come from all over the country and will cover a broad spectrum of topics related to the study of groups, such as representations of solvable groups, representations of simple groups, character theory, classes of groups, groups and combinatorics, recognizing simple groups from group invariants, p-groups, and fusion systems.The conference will provide group theory researchers in the US a forum to disseminate their own research as well as to learn about new and significant results in the area. The conference will provide a particularly inviting environment to young mathematicians and will inspire future cooperation and collaborations among the participants. It is expected that it will have great impacts on the group theory research community. The organizers will make great effort to attract a demographically diverse group of participants including women and racial and ethnic minorities. More information can be found at the conference website, https://zassenhausgroupsandfriends.wp.txstate.edu/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持参加将在德克萨斯州圣马科斯的德克萨斯州立大学举行的2024年Zassenhaus团体和朋友会议。它将发生在大学的校园从周五,2024年5月31日中午,到周日下午早些时候,2024年6月2日。预计约有40名研究人员将出席会议,其中许多人将发表演讲。扎森豪斯群和之友会议,原名扎森豪斯群论会议,是一系列年度会议,自20世纪60年代成立以来一直为数学界服务。演讲者预计将来自全国各地,并将涵盖广泛的主题有关的研究组,如可解群的表示,简单群的表示,字符理论,类的群体,群体和组合,认识简单群体的群体不变量,p-群体,会议将为美国群论研究人员提供一个论坛,以传播他们自己的研究,并了解该领域的新的和重要的成果。这次会议将提供一个特别邀请的环境,以年轻的数学家,并将激发未来的合作和参与者之间的协作。预计它将对群论研究界产生重大影响。组织者将尽最大努力吸引包括妇女、少数民族和种族在内的人口统计学上多样化的参与者。更多信息可以在会议网站上找到,https://zassenhausgroupsandfriends.wp.txstate.edu/This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Yang其他文献

Monolayer-by-monolayer stacked pyramid-like MoS2 nanodots on monolayer MoS2 flakes with enhanced photoluminescence
单层 MoS2 薄片上单层堆叠的金字塔状 MoS2 纳米点具有增强的光致发光
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Cailei Yuan;Yingjie Cao;Xingfang Luo;Ting Yu;Zhenping Huang;Bo Xu;Yong Yang;Qinliang Li;Gang Gu;Wen Lei
  • 通讯作者:
    Wen Lei
Self-consistent determination of the lamellar phase content in MCM-41 using X-ray diffraction, nitrogen adsorption and thermogravimetry
使用 X 射线衍射、氮气吸附和热重分析法自洽测定 MCM-41 中的层状相含量
Segmentation of brain MR images based on an effective fuzzy clustering algorithm
基于有效模糊聚类算法的脑部MR图像分割
The Impact of Population Aging on Regional Economic Growth: A Literature Review
人口老龄化对区域经济增长的影响:文献综述
Expression Recognition Methods Based on Feature Fusion
基于特征融合的表情识别方法
  • DOI:
    10.1007/978-3-642-15314-3_33
  • 发表时间:
    2010-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guoyin Wang;Yong Yang;Jiefang Deng;Chang Su
  • 通讯作者:
    Chang Su

Yong Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong Yang', 18)}}的其他基金

Conference: China-US Group Theory Summit 2023
会议:2023中美群体理论峰会
  • 批准号:
    2317056
  • 财政年份:
    2023
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
REU Site: Algebra, Combinatorics, and Statistics
REU 网站:代数、组合学和统计学
  • 批准号:
    2150205
  • 财政年份:
    2022
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
China-US Group Theory Summit 2019
2019中美群体理论峰会
  • 批准号:
    1903127
  • 财政年份:
    2019
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
REU Site: Algebra, Combinatorics, and Statistics
REU 网站:代数、组合学和统计学
  • 批准号:
    1757233
  • 财政年份:
    2018
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
UNS: Nanotopographical Memory Modulates Stem Cell Fate
UNS:纳米地形记忆调节干细胞命运
  • 批准号:
    1807734
  • 财政年份:
    2017
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
UNS: Nanotopographical Memory Modulates Stem Cell Fate
UNS:纳米地形记忆调节干细胞命运
  • 批准号:
    1511759
  • 财政年份:
    2015
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
BRIGE: In Vitro Cellular Model of Amyloid Plaque Formation Using Combinatorial Libraries of Micro-nano-hybrid Topographies with Tunable Elasticity
BRIGE:使用弹性可调的微纳米混合拓扑结构组合文库的淀粉样斑块形成的体外细胞模型
  • 批准号:
    1227766
  • 财政年份:
    2012
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了