BRIGE: In Vitro Cellular Model of Amyloid Plaque Formation Using Combinatorial Libraries of Micro-nano-hybrid Topographies with Tunable Elasticity

BRIGE:使用弹性可调的微纳米混合拓扑结构组合文库的淀粉样斑块形成的体外细胞模型

基本信息

  • 批准号:
    1227766
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

PI: Yang, YongProposal Number: 1227766The objective of this project is to develop combinatorial libraries of highly defined micro-nanohybrid topographies with tunable elasticity to build an in vitro model of amyloid plaque formation from neural cells for understanding and alleviating Alzheimer's disease (AD). The overall goal is to delineate the molecular mechanism by which transgenic neural cells generate amyloid plaques in a biomimetic microenvironment and discover pharmaceutical targets against AD. Intellectual Merit: Amyloid plaque formation is a neuropathological hallmark of Alzheimer's disease (AD) which is the most prominent cause of dementia in the elderly. It is caused by the extracellular deposition of aggregated amyloid-beta (A-beta) peptides in the brain. In vivo studies reveal that the amyloid plaque's formation changes the local microenvironment, subsequently leading to neuronal alterations, eventually neurodegeneration. Inhibition of amyloid plaque formation represents a feasible therapeutic target against AD. The current lack of in vitro models of amyloid plaques formed from neural cells greatly limits the progress in seeking strategies to inhibit amyloid plaque formationand identifying therapeutic targets. There is, therefore, a critical need for the development of cell culture technologies in a biomimetic manner that can be reproducibly applied to regulate neural cell behavior to facilitate formation of amyloid plaques for AD research and therapeutic development. Because neural cells as well as A-beta aggregation are highly sensitive to surface properties of the substrate, it is hypothesized that the amyloid plaque formation can be recapitulated by culturing neural cells on highly defined micro-nano-hybrid topographies with tunable elasticity. To test this hypothesis, the PI following specific tasks are proposed: 1) Produce highly defined micro-nano-hybrid topography; 2) Precisely tune the level of elasticity of hydrogels at nanoscale; 3) Engineer combinatorial libraries of micro-nano-hybrid topographies with tunable elasticity to build an in vitro cellular model of amyloid plaque formation.At the completion of this project, the PI expects to have developed the technologies necessary to produce well-defined micro-nano-hybrid topography and to fine tune substrate elasticity at the nanoscale. With these enabling technologies, combinatorial libraries of micro-/nano hybrid topographies with tunable elasticity is engineered to facilitate the establishment of in vitro cellular model of amyloid plaque formation, which is not only crucial to the elucidation of the fundamental of amyloid plaque formation, but will also contribute to understand and alleviate AD. Broader Impacts: As an indispensable part of this proposal, extensive Education and Outreach activities have been planned to broaden the participation of individuals from underrepresented groups. Graduate and undergraduate students, especially women and minority students will be involved into every aspect of the multidisciplinary research. Graduate students will work on bothEngineering and Health Science campuses at WVU, will be taught polymer nanoscience and nanoengineering, and appreciate cell culture and characterization skills at the molecular and cellular levels. Undergraduate students will obtain hands-on research experience to deepen their understanding of scientific principles and to relate classroom knowledge to phenomena they observe in the real world. Moreover, projects comprising teaching modules and lab demonstrations will be developed and integrated into existing outreach events at WVU, especially the weeklong Engineers of Tomorrow summer camp designed to encourage Appalachian area G9-12 students, in particular young women and minorities, to participate in a science or engineering field. Nanobiotechnology will be publicized on Nano Days in Children's Discovery Museum of West Virginia to excite the children and increase public awareness of nanobiotechnology. This project will further collaborative research with health science researchers and foster collaborations with local industries.
主要研究者:杨勇提案编号:1227766该项目的目的是开发具有可调弹性的高度定义的微纳米混合形貌的组合库,以建立从神经细胞形成淀粉样蛋白斑块的体外模型,用于理解和减轻阿尔茨海默病(AD)。总体目标是描绘转基因神经细胞在仿生微环境中产生淀粉样斑块的分子机制,并发现抗AD的药物靶点。智力优势:淀粉样斑块的形成是阿尔茨海默病(AD)的神经病理学标志,AD是老年痴呆症的最主要原因。它是由聚集的淀粉样β(A-β)肽在脑中的细胞外沉积引起的。体内研究表明,淀粉样蛋白斑块的形成改变了局部微环境,随后导致神经元改变,最终导致神经退行性变。抑制淀粉样蛋白斑块形成代表了针对AD的可行治疗靶点。目前缺乏神经细胞形成淀粉样斑块的体外模型,这极大地限制了寻找抑制淀粉样斑块形成的策略和确定治疗靶点的进展。因此,迫切需要以仿生方式开发细胞培养技术,其可以可重复地应用于调节神经细胞行为以促进淀粉样蛋白斑块的形成,用于AD研究和治疗开发。 由于神经细胞以及A-β聚集体对基质的表面性质高度敏感,因此假设可以通过在具有可调弹性的高度限定的微纳米混合形貌上培养神经细胞来重现淀粉样蛋白斑块的形成。为了验证这一假设,PI提出了以下具体任务:1)产生高度限定的微纳米混合形貌:2)精确调节纳米级水凝胶的弹性水平; 3)设计具有可调弹性的微纳米混合形貌的组合库,以建立淀粉样蛋白斑块形成的体外细胞模型。PI期望已经开发出必要的技术来产生良好定义的微纳米混合形貌,并在纳米尺度上微调衬底弹性。利用这些技术,构建了弹性可调的微/纳混合形貌的组合库,有助于建立淀粉样斑块形成的体外细胞模型,这不仅对阐明淀粉样斑块形成的基础至关重要,而且有助于理解和缓解AD。更广泛的影响:作为这项建议不可或缺的一部分,已计划开展广泛的教育和外联活动,以扩大代表性不足群体的个人的参与。研究生和本科生,特别是妇女和少数民族学生将参与多学科研究的各个方面。研究生将在WVU的工程和健康科学校区工作,将教授聚合物纳米科学和纳米工程,并欣赏分子和细胞水平的细胞培养和表征技能。本科生将获得实践研究经验,加深他们对科学原理的理解,并将课堂知识与他们在真实的世界中观察到的现象联系起来。此外,包括教学模块和实验室演示的项目将被开发并整合到西弗吉尼亚大学现有的外联活动中,特别是为期一周的明日夏令营工程师,旨在鼓励阿巴拉契亚地区的G9 - 12学生,特别是年轻女性和少数民族,参加科学或工程领域。纳米生物技术将在西弗吉尼亚州儿童发现博物馆的纳米日进行宣传,以激发儿童的兴趣,提高公众对纳米生物技术的认识。该项目将进一步与健康科学研究人员进行合作研究,并促进与当地产业的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Yang其他文献

Monolayer-by-monolayer stacked pyramid-like MoS2 nanodots on monolayer MoS2 flakes with enhanced photoluminescence
单层 MoS2 薄片上单层堆叠的金字塔状 MoS2 纳米点具有增强的光致发光
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Cailei Yuan;Yingjie Cao;Xingfang Luo;Ting Yu;Zhenping Huang;Bo Xu;Yong Yang;Qinliang Li;Gang Gu;Wen Lei
  • 通讯作者:
    Wen Lei
Self-consistent determination of the lamellar phase content in MCM-41 using X-ray diffraction, nitrogen adsorption and thermogravimetry
使用 X 射线衍射、氮气吸附和热重分析法自洽测定 MCM-41 中的层状相含量
Segmentation of brain MR images based on an effective fuzzy clustering algorithm
基于有效模糊聚类算法的脑部MR图像分割
The Impact of Population Aging on Regional Economic Growth: A Literature Review
人口老龄化对区域经济增长的影响:文献综述
Expression Recognition Methods Based on Feature Fusion
基于特征融合的表情识别方法
  • DOI:
    10.1007/978-3-642-15314-3_33
  • 发表时间:
    2010-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guoyin Wang;Yong Yang;Jiefang Deng;Chang Su
  • 通讯作者:
    Chang Su

Yong Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong Yang', 18)}}的其他基金

Conference: Zassenhaus Groups and Friends Conference 2024
会议:2024 年 Zassenhaus 团体和朋友会议
  • 批准号:
    2346615
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Conference: China-US Group Theory Summit 2023
会议:2023中美群体理论峰会
  • 批准号:
    2317056
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
REU Site: Algebra, Combinatorics, and Statistics
REU 网站:代数、组合学和统计学
  • 批准号:
    2150205
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
China-US Group Theory Summit 2019
2019中美群体理论峰会
  • 批准号:
    1903127
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
REU Site: Algebra, Combinatorics, and Statistics
REU 网站:代数、组合学和统计学
  • 批准号:
    1757233
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
UNS: Nanotopographical Memory Modulates Stem Cell Fate
UNS:纳米地形记忆调节干细胞命运
  • 批准号:
    1807734
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
UNS: Nanotopographical Memory Modulates Stem Cell Fate
UNS:纳米地形记忆调节干细胞命运
  • 批准号:
    1511759
  • 财政年份:
    2015
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于BYL in vitro体系的抗病毒生物药剂分子作用机理研究
  • 批准号:
    31401710
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于In vitro细胞模型的饲料虾青素的吸收、转运、沉积机制及作用机理研究
  • 批准号:
    31101911
  • 批准年份:
    2011
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
In silico/In vitro偶联ACAT生理模型筛选药物及其制剂的生物利用度/生物等效性
  • 批准号:
    81173009
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of in vitro intravasation/extravasation model for understanding the interaction between cancer and vascular endothelial cells at the cellular and molecular levels
开发体外渗入/渗出模型,以在细胞和分子水平上了解癌症与血管内皮细胞之间的相互作用
  • 批准号:
    23KJ0490
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Transitions: A unified cellular and in vitro approach to discover molecular mechanisms of microtubule dynamics and regulation
转变:一种统一的细胞和体外方法来发现微管动力学和调节的分子机制
  • 批准号:
    2234112
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Connecting in vitro glutamine synthetase biophysics with the cellular environment
将体外谷氨酰胺合成酶生物物理学与细胞环境联系起来
  • 批准号:
    10382128
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
Connecting in vitro glutamine synthetase biophysics with the cellular environment
将体外谷氨酰胺合成酶生物物理学与细胞环境联系起来
  • 批准号:
    10570167
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
Probing cellular, molecular and biomechanical barriers to immunotherapy in the tumor microenvironment with organotypic in vitro models of the tumor-lympho-immune interface
利用肿瘤-淋巴-免疫界面的器官型体外模型探索肿瘤微环境中免疫治疗的细胞、分子和生物力学障碍
  • 批准号:
    10457432
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
Probing cellular, molecular and biomechanical barriers to immunotherapy in the tumor microenvironment with organotypic in vitro models of the tumor-lympho-immune interface
利用肿瘤-淋巴-免疫界面的器官型体外模型探索肿瘤微环境中免疫治疗的细胞、分子和生物力学障碍
  • 批准号:
    10696126
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
Probing cellular, molecular and biomechanical barriers to immunotherapy in the tumor microenvironment with organotypic in vitro models of the tumor-lympho-immune interface
利用肿瘤-淋巴-免疫界面的器官型体外模型探索肿瘤微环境中免疫治疗的细胞、分子和生物力学障碍
  • 批准号:
    10299447
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
Probing cellular, molecular and biomechanical barriers to immunotherapy in the tumor microenvironment with organotypic in vitro models of the tumor-lympho-immune interface
利用肿瘤-淋巴-免疫界面的器官型体外模型探索肿瘤微环境中免疫治疗的细胞、分子和生物力学障碍
  • 批准号:
    10533678
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
Probing cellular, molecular and biomechanical barriers to immunotherapy in the tumor microenvironment with organotypic in vitro models of the tumor-lympho-immune interface
利用肿瘤-淋巴-免疫界面的器官型体外模型探索肿瘤微环境中免疫治疗的细胞、分子和生物力学障碍
  • 批准号:
    10681942
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
Probing cellular, molecular and biomechanical barriers to immunotherapy in the tumor microenvironment with organotypic in vitro models of the tumor-lympho-immune interface
利用肿瘤-淋巴-免疫界面的器官型体外模型探索肿瘤微环境中免疫治疗的细胞、分子和生物力学障碍
  • 批准号:
    10737791
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了