NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
基本信息
- 批准号:2346885
- 负责人:
- 金额:$ 35.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With support from the NSF Division of Chemistry, Hannah Shafaat of Ohio State University and collaborators at the Technical University of Munich and the Max Planck Institute for Chemical Energy Conversion will develop and characterize optimized catalytic systems for production of hydrogen gas from water. The development of catalysts that can efficiently convert electrochemical energy into sustainable fuels such as H2 represents a critical obstacle that must be overcome in order to replace fossil fuels with environmentally friendly alternatives. Nature’s catalysts for hydrogen conversion, enzymes known as hydrogenases, exhibit an unparalleled degree of activity; despite global efforts, no sustainable synthetic catalyst has yet been developed that is comparable in rate and efficiency to the natural hydrogenases. While practical application of the natural systems is limited, decades of study on hydrogenases have provided substantial understanding of the enzyme properties as well as the catalytic mechanism, revealing key features that are necessary for function. These general design principles will be applied to construct a highly efficient catalytic system for electrochemical energy conversion. Through this project, graduate students from all three teams will combine their expertise across areas of biochemistry, inorganic chemistry, spectroscopy, and electrochemistry, building interdisciplinary international collaborations. The insight obtained from these fundamental studies is expected to be broadly applicable to the generation of scalable materials for electrochemical energy storage, including water oxidation, nitrogen fixation, and CO2 reduction, with potential for global socioeconomic impact. Students and postdoctoral scholars conducting the research will experience international exchange, including a workshop involving the entire project team.This approach to catalyst design from the group of Hannah Shafaat at Ohio State University and her German collaborators focuses on the development of a robust, artificial hydrogenase electrocatalyst. Using a model metalloenzyme as a well-defined scaffold, the team will incorporate select molecular complexes as intramolecular electron relays to functionally model the native redox-active cofactors and establish their roles in electrocatalysis. The hybrid enzyme will be anchored onto an electrode surface, designed to act as an electron transfer partner, and system variables that impact interfacial charge transfer will be probed. The specific objectives of the research program are to (i) design and implement strategies for integration of the individual components; (ii) to apply novel in situ spectro-electrochemical studies to interrogate the mechanism of H2 evolution by the hybrid constructs and (iii) to optimize these systems by tuning secondary and outer sphere properties to enhance catalytic efficiencies. By identifying the role that each component plays in catalysis, sluggish steps will be improved upon and unproductive or degradative pathways can be eradicated to systematically improve the catalytic system.This research was funded under the NSF-DFG Lead Agency Activity in Electrosynthesis and Electrocatalysis (NSF-DFG EChem) opportunity NSF 20-578.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在NSF化学部的支持下,俄亥俄州州立大学的Hannah Shafaat以及慕尼黑工业大学和马克斯普朗克化学能转换研究所的合作者将开发和表征用于从水中生产氢气的优化催化系统。开发能够有效地将电化学能转化为可持续燃料(如H2)的催化剂是一个关键障碍,必须克服这一障碍,才能用环境友好的替代品取代化石燃料。自然界中用于氢转化的催化剂,即被称为氢化酶的酶,表现出无与伦比的活性;尽管全球努力,但尚未开发出可持续的合成催化剂,其速率和效率可与天然氢化酶相媲美。虽然天然系统的实际应用是有限的,但几十年来对氢化酶的研究已经提供了对酶性质以及催化机制的实质性理解,揭示了功能所必需的关键特征。这些一般设计原则将被应用于构建一个高效的电化学能量转换催化系统。通过这个项目,来自所有三个团队的研究生将联合收割机结合他们在生物化学,无机化学,光谱学和电化学领域的专业知识,建立跨学科的国际合作。从这些基础研究中获得的见解预计将广泛适用于生成可扩展的电化学储能材料,包括水氧化,固氮和二氧化碳减排,并具有潜在的全球社会经济影响。进行研究的学生和博士后学者将经历国际交流,包括一个涉及整个项目团队的研讨会。这种方法来催化剂设计从集团的汉娜Shafaat在俄亥俄州州立大学和她的德国合作者专注于一个强大的,人工氢化酶电催化剂的发展。使用模型金属酶作为定义明确的支架,该团队将选择分子复合物作为分子内电子中继,以功能性地模拟天然氧化还原活性辅因子,并建立它们在电催化中的作用。杂交酶将被锚定在电极表面上,被设计为充当电子转移伴侣,并且将探测影响界面电荷转移的系统变量。该研究计划的具体目标是(i)设计和实施单个组件集成的策略;(ii)应用新的原位光谱电化学研究来询问混合构建体的H2演化机制;以及(iii)通过调整次级和外层性质来优化这些系统,以提高催化效率。通过确定每种组分在催化作用中的作用,该研究由NSF-DFG电合成和电催化牵头机构活动资助(NSF-DFG EChem)机会NSF 20- 578.该奖项反映了NSF的法定使命,并通过利用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hannah Shafaat其他文献
Hannah Shafaat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hannah Shafaat', 18)}}的其他基金
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2108684 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
- 批准号:
2140211 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
CAREER: Metalloenzyme mechanisms probed by resonance Raman spectroscopy
职业:通过共振拉曼光谱探测金属酶机制
- 批准号:
1454289 - 财政年份:2015
- 资助金额:
$ 35.01万 - 项目类别:
Continuing Grant
相似国自然基金
基于光纤激光的DFG红外频率梳光源关键问题的研究
- 批准号:61250017
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
- 批准号:21172265
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis
NSF-DFG Echem:电化学增强低温催化氨合成
- 批准号:
2140971 - 财政年份:2022
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
- 批准号:
2140374 - 财政年份:2022
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
Collaborative Proposal: NSF-DFG Echem: Understanding the Mechanism of Urea Oxidation on Nickel-Based Electrocatalysts
合作提案:NSF-DFG Echem:了解镍基电催化剂上尿素氧化的机制
- 批准号:
2054933 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG Echem: CAS: Synergistic Experimental and Computational Approaches to Designing Electrocatalysts with Proton-Responsive Ligand Architectures
NSF-DFG Echem:CAS:设计具有质子响应配体结构的电催化剂的协同实验和计算方法
- 批准号:
2055097 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG Echem: Operando Electronic Structure Determination of Iron and its Time-Dependent Dynamics in FexNi100-x(OH)y Electrooxidation Catalysts
NSF-DFG Echem:FexNi100-x(OH)y 电氧化催化剂中铁的操作电子结构测定及其随时间变化的动力学
- 批准号:
2055245 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Continuing Grant
NSF-DFG Echem: CAS: Cooperativity Between Immobilized Redox Mediators for Selective Anodic Biomass Valorization
NSF-DFG Echem:CAS:固定化氧化还原介体之间的协同作用,用于选择性阳极生物质增值
- 批准号:
2055689 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG Echem: Elucidating Surface Structure Contribution of Facets, Steps and Kinks in Electrocatalysis of the Oxygen Evolution and Reduction Reactions
NSF-DFG Echem:阐明面、台阶和扭结在析氧和还原反应电催化中的表面结构贡献
- 批准号:
2139971 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG Echem: Design of Nanostructured Noble - Metal Chalcogenide Electrocatalysts for Hydrogen Evolution Reaction
NSF-DFG Echem:用于析氢反应的纳米结构贵金属硫属化物电催化剂的设计
- 批准号:
2140038 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
- 批准号:
2140211 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant
NSF-DFG Echem: CAS: Spin-polarized electron currents for spin-selective electrocatalysis
NSF-DFG Echem:CAS:用于自旋选择性电催化的自旋极化电子流
- 批准号:
2140249 - 财政年份:2021
- 资助金额:
$ 35.01万 - 项目类别:
Standard Grant