NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase

NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问

基本信息

  • 批准号:
    2346885
  • 负责人:
  • 金额:
    $ 35.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

With support from the NSF Division of Chemistry, Hannah Shafaat of Ohio State University and collaborators at the Technical University of Munich and the Max Planck Institute for Chemical Energy Conversion will develop and characterize optimized catalytic systems for production of hydrogen gas from water. The development of catalysts that can efficiently convert electrochemical energy into sustainable fuels such as H2 represents a critical obstacle that must be overcome in order to replace fossil fuels with environmentally friendly alternatives. Nature’s catalysts for hydrogen conversion, enzymes known as hydrogenases, exhibit an unparalleled degree of activity; despite global efforts, no sustainable synthetic catalyst has yet been developed that is comparable in rate and efficiency to the natural hydrogenases. While practical application of the natural systems is limited, decades of study on hydrogenases have provided substantial understanding of the enzyme properties as well as the catalytic mechanism, revealing key features that are necessary for function. These general design principles will be applied to construct a highly efficient catalytic system for electrochemical energy conversion. Through this project, graduate students from all three teams will combine their expertise across areas of biochemistry, inorganic chemistry, spectroscopy, and electrochemistry, building interdisciplinary international collaborations. The insight obtained from these fundamental studies is expected to be broadly applicable to the generation of scalable materials for electrochemical energy storage, including water oxidation, nitrogen fixation, and CO2 reduction, with potential for global socioeconomic impact. Students and postdoctoral scholars conducting the research will experience international exchange, including a workshop involving the entire project team.This approach to catalyst design from the group of Hannah Shafaat at Ohio State University and her German collaborators focuses on the development of a robust, artificial hydrogenase electrocatalyst. Using a model metalloenzyme as a well-defined scaffold, the team will incorporate select molecular complexes as intramolecular electron relays to functionally model the native redox-active cofactors and establish their roles in electrocatalysis. The hybrid enzyme will be anchored onto an electrode surface, designed to act as an electron transfer partner, and system variables that impact interfacial charge transfer will be probed. The specific objectives of the research program are to (i) design and implement strategies for integration of the individual components; (ii) to apply novel in situ spectro-electrochemical studies to interrogate the mechanism of H2 evolution by the hybrid constructs and (iii) to optimize these systems by tuning secondary and outer sphere properties to enhance catalytic efficiencies. By identifying the role that each component plays in catalysis, sluggish steps will be improved upon and unproductive or degradative pathways can be eradicated to systematically improve the catalytic system.This research was funded under the NSF-DFG Lead Agency Activity in Electrosynthesis and Electrocatalysis (NSF-DFG EChem) opportunity NSF 20-578.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在NSF化学部的支持下,俄亥俄州立大学的Hannah Shafaat以及慕尼黑技术大学的合作者和Max Planck化学能源转换研究所将开发并表征优化的催化系统,以从水中生产氢气。可以有效地将电化学能量转化为H2等可持续燃料的催化剂的开发是一个关键的障碍,以便用环保替代品代替化石燃料。大自然的氢转化催化剂,称为氢化酶的酶暴露了无与伦比的活性。尽管进行了全球努力,但尚未开发出可持续的合成催化剂,其速率和效率与天然氢化酶相当。尽管天然系统的实际应用是有限的,但数十年来对氢化酶的研究提供了对酶特性以及催化机制的实质性了解,从而揭示了功能所需的关键特征。这些一般设计原理将用于构建用于电化学能量转化的高效催化系统。通过这个项目,来自所有三支团队的研究生将在生物化学,无机化学,光谱和电化学领域之间结合他们的专业知识,并建立跨学科的国际合作。从这些基本研究中获得的见解预计将广泛适用于产生可扩展的电化学能源储存材料,包括水氧化,氮固定和二氧化碳减少,具有全球社会经济影响的潜力。进行研究的学生和博士后学者将体验国际交流,其中包括涉及整个项目团队的研讨会。这种催化剂设计的方法来自俄亥俄州立大学的汉娜·沙法特(Hannah Shafaat),她的德国合作者专注于发展强大的人工氢化酶电催化剂。该团队将模型金属酶作为定义明确的支架,将精选的分子复合物作为分子内电子继电器融合,以在功能上对天然氧化还原活性辅助因子进行建模并确定其在电催化中的作用。混合酶将锚定在电极表面上,旨在充当电子传输伙伴,并将探测影响界面电荷转移的系统变量。研究计划的具体目标是(i)设计和实施单个组件集成的策略; (ii)应用新颖的原位光谱 - 电化学研究来通过调谐二级和外球体特性来提高催化效率,从而通过混合构建体和(iii)询问H2进化的机理。通过确定每个组件在催化中所起的作用,可以改善迟钝的步骤,并可以放射降解以系统地改善催化系统。在NSF-DFG铅铅机构在电气合成和电型授予(NSF-DFG ECHEM统计中)的研究基于催化系统。并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估值得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hannah Shafaat其他文献

Hannah Shafaat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hannah Shafaat', 18)}}的其他基金

Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
  • 批准号:
    2419343
  • 财政年份:
    2024
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
  • 批准号:
    2108684
  • 财政年份:
    2021
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2140211
  • 财政年份:
    2021
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Standard Grant
CAREER: Metalloenzyme mechanisms probed by resonance Raman spectroscopy
职业:通过共振拉曼光谱探测金属酶机制
  • 批准号:
    1454289
  • 财政年份:
    2015
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于光纤激光的DFG红外频率梳光源关键问题的研究
  • 批准号:
    61250017
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于可编程光纤激光器与有机非线性晶体的光纤太赫兹融合系统研究
  • 批准号:
    61107087
  • 批准年份:
    2011
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
  • 批准号:
    21172265
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
可调谐单频中红外激光器和生物气体同位素的检测研究
  • 批准号:
    60878063
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
40Gbit/s高速全光码型转换的新机理和新技术研究
  • 批准号:
    60577006
  • 批准年份:
    2005
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis
NSF-DFG Echem:电化学增强低温催化氨合成
  • 批准号:
    2140971
  • 财政年份:
    2022
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
  • 批准号:
    2140374
  • 财政年份:
    2022
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Standard Grant
Collaborative Proposal: NSF-DFG Echem: Understanding the Mechanism of Urea Oxidation on Nickel-Based Electrocatalysts
合作提案:NSF-DFG Echem:了解镍基电催化剂上尿素氧化的机制
  • 批准号:
    2054933
  • 财政年份:
    2021
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Synergistic Experimental and Computational Approaches to Designing Electrocatalysts with Proton-Responsive Ligand Architectures
NSF-DFG Echem:CAS:设计具有质子响应配体结构的电催化剂的协同实验和计算方法
  • 批准号:
    2055097
  • 财政年份:
    2021
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Operando Electronic Structure Determination of Iron and its Time-Dependent Dynamics in FexNi100-x(OH)y Electrooxidation Catalysts
NSF-DFG Echem:FexNi100-x(OH)y 电氧化催化剂中铁的操作电子结构测定及其随时间变化的动力学
  • 批准号:
    2055245
  • 财政年份:
    2021
  • 资助金额:
    $ 35.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了