Charge Patterning and Molecular Interactions in the Phase Behavior of Polyelectrolyte/Particle Solutions
聚电解质/颗粒溶液相行为中的电荷模式和分子相互作用
基本信息
- 批准号:2347031
- 负责人:
- 金额:$ 51.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYThis award supports theoretical and computational research and education in the fields of polymer physics, thermodynamics, and computer simulations of complex systems. Consumer products and biological structures within the cell both rely on the formation of liquid droplets within another liquid media, known as 'liquid-liquid phase separation'. In biology, this leads to compartments that can organize the interior of the cell. In industry, a similar effect is used to control the 'feel' or texture of personal care or food products. The physical reason for these phase separation phenomena is complicated, but is often attributed to several types of large molecules that interact with electrostatic charge. Many of these systems include particles such as folded proteins, which contain nanometer-scale charged patches that interact with long-chain, flexible molecules. The PI's group will investigate how the surface of these charged particles affects liquid-liquid phase separation. This will consist of understanding the 'stickiness' between positively-charged molecular chains called polycations, and negatively-charged molecules that form nanoscale structures similar to those found in soap, called surfactant micelles. The polycations and surfactant micelles stick together in a dynamic, gel-like material known as a complex coacervate. This sticking will be highly dependent on the patchiness of the micelles, and the presence of molecules that get in the way of the charged interactions. The PI's group will establish how different patches and molecular components will affect the propensity to undergo liquid-liquid phase separation. This work will show how complicated biological systems, such as patchy proteins, can form similar structures in the cell. This work will also inform the design of consumer products, such as shampoo, cosmetics, and perfumes, and will guide engineers in navigating a complicated design space as they seek to use greener and healthier formulations. The integrated education and outreach component of this project supports broader outreach to underrepresented minority groups, along with graduate and undergraduate research training and mentorship. Outreach efforts consist of using interactive computer simulation as the centerpiece of a PI-designed activity within the St. Elmo Brady STEM Academy at the University of Illinois. This project will build up demonstrations needed to understand more 'advanced' aspects of existing efforts, by developing modules that introduce the concepts of (macro)molecules and their corresponding materials. The overall activity will introduce the lifecycle of plastics and sustainability to elementary-age students. TECHNICAL SUMMARYThis project will use simulation and polymer field theory to study how molecular interactions and charge patchiness affect phase separation in polyelectrolyte/particle solutions. A wide variety of materials systems, from consumer products to phase-separated regions in the cell, rely on charge-driven phase separation. This process of 'coacervation' can be driven by the attraction between oppositely-charged polyelectrolytes and particle species such as surfactant micelles or proteins. Taking cues from biology, the PI will establish how charged interactions and patchiness control phase behavior in PE-particle coacervates. In this work, the PI will systematically study the relationship between molecular structure, particle configuration, and non-uniform charge patterning. This investigation will build on an established hybrid field theory model, with parameters informed by particle-based simulations to understand the strong, polyelectrolyte-mediated electrostatics between nearby charged particles. This model will be used to first probe the effect of steric repulsion and hydrophobic interactions on surfactant-polyelectrolyte coacervates, and then charged patterns will be introduced onto particles to represent catchy particles or proteins. This project will establish the theoretical and computational basis for understanding coacervates formed between polyelectrolytes and a variety of particles that are not flexible polymers, yielding new insights into the role of charged patterning and surface interactions on bulk phase behavior. This will have impact on materials important for a wide range of consumer applications and biological systems. Outreach and education are also an integral part of this research project, which will support the interdisciplinary training of at least one graduate and one undergraduate researchers. The PI's group will develop outreach activities, further integrating computation into existing, successful programs such as the St. Elmo Brady STEM Academy. The goal will be to design interactive computational activities to increase student engagement with difficult and abstract concepts in plastic life cycles and recycling.STATEMENT OF MERIT REVIEW:This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持聚合物物理学,热力学和复杂系统的计算机模拟领域的理论和计算研究和教育。消费品和细胞内的生物结构都依赖于另一种液体介质中液滴的形成,称为“液-液相分离”。在生物学中,这导致了可以组织细胞内部的隔间。在工业中,类似的效果用于控制个人护理或食品的“感觉”或质地。这些相分离现象的物理原因是复杂的,但通常归因于与静电荷相互作用的几种类型的大分子。这些系统中的许多包括诸如折叠蛋白质之类的粒子,其包含与长链柔性分子相互作用的纳米级带电补丁。PI的小组将研究这些带电粒子的表面如何影响液-液相分离。这将包括理解被称为聚阳离子的带正电荷的分子链和形成类似于肥皂中发现的纳米级结构的带负电荷的分子(称为表面活性剂胶束)之间的“粘性”。聚阳离子和表面活性剂胶束粘在一起,形成动态的凝胶状材料,称为复合凝聚层。这种粘附将高度依赖于胶束的斑块性,以及阻碍带电相互作用的分子的存在。PI小组将确定不同贴片和分子组分将如何影响液-液相分离的倾向。这项工作将展示复杂的生物系统,如补丁蛋白质,如何在细胞中形成类似的结构。这项工作还将为洗发水、化妆品和香水等消费品的设计提供信息,并将指导工程师在复杂的设计空间中导航,因为他们寻求使用更环保、更健康的配方。该项目的综合教育和外联部分支持向代表性不足的少数群体进行更广泛的外联,沿着研究生和本科生的研究培训和指导。推广工作包括使用交互式计算机模拟作为在伊利诺伊大学圣埃尔莫布雷迪STEM学院内PI设计的活动的核心。该项目将通过开发介绍(大)分子及其相应材料概念的模块,建立了解现有努力的更“高级”方面所需的演示。整个活动将向小学生介绍塑料的生命周期和可持续性。技术概要本项目将使用模拟和聚合物场理论来研究分子间相互作用和电荷斑块如何影响颗粒/颗粒溶液中的相分离。从消费品到电池中的相分离区域,各种各样的材料系统都依赖于电荷驱动的相分离。这种“凝聚”过程可以由带相反电荷的聚电解质和颗粒物质(如表面活性剂胶束或蛋白质)之间的吸引力驱动。从生物学的线索,PI将建立如何带电的相互作用和斑块控制相行为在PE颗粒凝聚。 在这项工作中,PI将系统地研究分子结构,粒子构型和非均匀电荷图案之间的关系。这项研究将建立在一个已建立的混合场论模型的基础上,其参数由基于粒子的模拟提供,以了解附近带电粒子之间强的聚电解质介导的静电。该模型将首先用于探测空间排斥和疏水相互作用对表面活性剂凝聚层的影响,然后将带电图案引入到颗粒上以表示吸引人的颗粒或蛋白质。该项目将建立理解聚电解质和各种非柔性聚合物颗粒之间形成的凝聚层的理论和计算基础,从而对带电图案化和表面相互作用对体相行为的作用产生新的见解。这将对广泛的消费应用和生物系统的重要材料产生影响。外联和教育也是该研究项目的一个组成部分,该项目将支持至少一名研究生和一名本科生研究人员的跨学科培训。PI的小组将开发外展活动,进一步将计算融入现有的,成功的计划,如圣埃尔莫布雷迪STEM学院。目标是设计交互式计算活动,以增加学生对塑料生命周期和回收中困难和抽象概念的参与。优点声明评论:该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Sing其他文献
Charles Sing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Sing', 18)}}的其他基金
DMREF: Engineering the On-The-Fly Control of 3-D Printed Block Bottlebrush Assemblies via Dynamic Bonds and Materials Processing
DMREF:通过动态键合和材料处理设计 3D 打印块洗瓶刷组件的动态控制
- 批准号:
2119172 - 财政年份:2021
- 资助金额:
$ 51.48万 - 项目类别:
Standard Grant
2019 Midwest Thermodynamics and Statistical Mechanics Conference (MTSM)
2019年中西部热力学与统计力学会议(MTSM)
- 批准号:
1911505 - 财政年份:2019
- 资助金额:
$ 51.48万 - 项目类别:
Standard Grant
Molecular Motions in Flowing Semi-dilute Polymer Solutions
流动半稀聚合物溶液中的分子运动
- 批准号:
1803757 - 财政年份:2018
- 资助金额:
$ 51.48万 - 项目类别:
Standard Grant
DMREF: Dynamic Control of 3-D Printed Hierarchical Soft Materials via Computation-Guided Molecular Design
DMREF:通过计算引导分子设计动态控制 3D 打印的分层软材料
- 批准号:
1727605 - 财政年份:2017
- 资助金额:
$ 51.48万 - 项目类别:
Standard Grant
CAREER: Developing the Design Rules of Charge Sequence to Inform Polymer Self-Assembly
职业:开发电荷序列设计规则以促进聚合物自组装
- 批准号:
1654158 - 财政年份:2017
- 资助金额:
$ 51.48万 - 项目类别:
Continuing Grant
Genetic Analysis of Glycolysis in Drosophila
果蝇糖酵解的遗传分析
- 批准号:
7714499 - 财政年份:1977
- 资助金额:
$ 51.48万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Sub-Voxel Molecular Patterning of Actuators and Photonic Structures in 3-Dimensional Free-Forms
合作研究:3 维自由形式的执行器和光子结构的亚体素分子图案
- 批准号:
2147703 - 财政年份:2022
- 资助金额:
$ 51.48万 - 项目类别:
Standard Grant
Collaborative Research: Sub-Voxel Molecular Patterning of Actuators and Photonic Structures in 3-Dimensional Free-Forms
合作研究:3 维自由形式的执行器和光子结构的亚体素分子图案
- 批准号:
2147830 - 财政年份:2022
- 资助金额:
$ 51.48万 - 项目类别:
Standard Grant
Molecular mechanisms underlying spatial patterning of mammalian skin
哺乳动物皮肤空间图案的分子机制
- 批准号:
10066183 - 财政年份:2020
- 资助金额:
$ 51.48万 - 项目类别:
Molecular mechanisms underlying spatial patterning of mammalian skin
哺乳动物皮肤空间图案的分子机制
- 批准号:
10231076 - 财政年份:2020
- 资助金额:
$ 51.48万 - 项目类别:
Characterisation of Molecular Players in Monocot Vein Patterning
单子叶植物叶脉图案中分子参与者的表征
- 批准号:
2445977 - 财政年份:2020
- 资助金额:
$ 51.48万 - 项目类别:
Studentship
Molecular mechanisms underlying spatial patterning of mammalian skin
哺乳动物皮肤空间图案的分子机制
- 批准号:
10685791 - 财政年份:2020
- 资助金额:
$ 51.48万 - 项目类别:
Hemichordate neural organization: generating neural system diversity from conserved molecular patterning
半索动物神经组织:从保守的分子模式产生神经系统多样性
- 批准号:
1656628 - 财政年份:2018
- 资助金额:
$ 51.48万 - 项目类别:
Continuing Grant
Molecular mechanism of heterochromatin patterning involved in gene regulation
异染色质模式参与基因调控的分子机制
- 批准号:
18K14675 - 财政年份:2018
- 资助金额:
$ 51.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular patterning of the hard palate during palatogenesis
腭发育过程中硬腭的分子模式
- 批准号:
9331221 - 财政年份:2017
- 资助金额:
$ 51.48万 - 项目类别:
The Molecular Basis for Skeletal Patterning
骨骼图案的分子基础
- 批准号:
1656752 - 财政年份:2017
- 资助金额:
$ 51.48万 - 项目类别:
Continuing Grant