DMREF: Engineering the On-The-Fly Control of 3-D Printed Block Bottlebrush Assemblies via Dynamic Bonds and Materials Processing
DMREF:通过动态键合和材料处理设计 3D 打印块洗瓶刷组件的动态控制
基本信息
- 批准号:2119172
- 负责人:
- 金额:$ 179.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Biology is capable of creating materials with truly complex properties; for example, chameleons can change their color by stretching their skin in ways that affect nanoscale structure, and muscle proteins can controllably break and reform to act as ‘shock absorbers’ that dissipate energy. These biological materials share a foundational principle, which is that molecular interactions have evolved to precisely control both the nanoscale structure and dynamics that govern function. Synthetic soft materials, however, rarely reach this level of sophistication due to the challenge of controlling both molecular arrangement and motions simultaneously. This Designing Materials to Revolutionize and Engineer our Future (DMREF) project seeks to bridge this gap by ‘dialing-in’ material properties on-the-fly by using processing to exert spatial and temporal control over molecular interactions. This will be achieved by using processing flows in 3-D printing to control molecular assemblies, along with breaking/reforming of chemical bonds to relax or arrest the material structure. Automated printing and characterization will facilitate materials discovery through machine learning protocols and will inform molecular design principles. This interdisciplinary effort will bring together academic researchers and scientists from the Air Force Research Laboratory (AFRL) who have combined expertise regarding making and characterizing materials, automating synthesis and processing, and using molecular simulation and machine learning. The effort will harness nanoscale structure and dynamics to create materials that emulate the complicated functions seen in biology. These new materials and processing capabilities will benefit society and the U.S. by on-the-fly printing new items with potential applications in camouflage, metamaterials, radiative cooling, energy conversion and storage devices, and displays. The research will also involve the training of students with broad expertise spanning chemistry, engineering, and physics, via both student mentorship and educational outreach to students from groups historically underrepresented in STEM fields.This project will combine the stresses in out-of-equilibrium 3D printing processes, along with dynamic (e.g. reversible or triggerable) bond chemistries and tunable molecular architecture, to establish an automated manufacturing/materials discovery protocol. A class of branched macromolecules known as bottlebrush block copolymers can form nanoscale assemblies, which can be distorted under an applied stress and are sensitive to branch length and density. These materials are especially useful because they can be decorated with chemical functional groups that affect properties via inter-bottlebrush interactions. In line with the Materials Genome Initiative (MGI), the project will establish a methodology to discover materials in this rich design space, using computer-driven design and physically-guided machine learning as a complement to automated synthesis, characterization, and processing design. The goal will be to use structural color as a proxy for printed materials with tunable ‘on-the-fly’ nanoscale structure, with dynamic bonding incorporated to freeze-in or temporally modulate these optical properties, and ultimately to incorporate stimuli-responsive functionality into these soft materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物学能够创造出具有真正复杂特性的材料;例如,变色龙可以通过拉伸皮肤来改变颜色,从而影响纳米级结构,肌肉蛋白质可以控制地断裂和重组,从而起到“减震器”的作用,消散能量。这些生物材料有一个共同的基本原理,即分子相互作用已经进化到精确控制纳米级结构和控制功能的动力学。然而,由于同时控制分子排列和运动的挑战,合成软材料很少达到这种复杂程度。这个设计材料来革新和工程我们的未来(DMREF)项目试图通过利用处理对分子相互作用施加空间和时间控制来“拨号”材料特性,从而弥合这一差距。这将通过使用3d打印中的加工流程来控制分子组装,以及打破/重整化学键来放松或阻止材料结构来实现。自动化打印和表征将通过机器学习协议促进材料的发现,并将为分子设计原理提供信息。这项跨学科的工作将汇集来自空军研究实验室(AFRL)的学术研究人员和科学家,他们在制造和表征材料、自动化合成和加工以及使用分子模拟和机器学习方面具有综合专业知识。这项工作将利用纳米级结构和动力学来制造材料,以模拟生物学中的复杂功能。这些新材料和加工能力将使社会和美国受益,通过动态打印新物品,在伪装、超材料、辐射冷却、能量转换和存储设备以及显示方面具有潜在的应用。该研究还将涉及通过学生指导和教育外展来培训具有广泛专业知识的学生,包括化学,工程和物理,这些学生来自历史上在STEM领域代表性不足的群体。该项目将结合非平衡3D打印过程中的应力,以及动态(例如可逆或可触发)键化学和可调分子结构,以建立自动化制造/材料发现协议。一类被称为瓶刷嵌段共聚物的支链大分子可以形成纳米级的组件,它可以在施加的应力下扭曲,并且对支链长度和密度敏感。这些材料特别有用,因为它们可以用化学官能团装饰,通过瓶刷间的相互作用影响性能。根据材料基因组计划(MGI),该项目将建立一种方法,在这个丰富的设计空间中发现材料,使用计算机驱动的设计和物理引导的机器学习作为自动化合成、表征和加工设计的补充。目标将是使用结构颜色作为可调的“动态”纳米级结构的印刷材料的代理,通过动态键结合来冻结或暂时调节这些光学特性,并最终将刺激响应功能融入这些软材料中。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid, interface-driven domain orientation in bottlebrush diblock copolymer films during thermal annealing
热退火过程中瓶刷二嵌段共聚物薄膜中快速、界面驱动的畴取向
- DOI:10.1039/d1sm01634b
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Patel, Bijal B.;Walsh, Dylan J.;Patel, Kush;Kim, Do Hoon;Kwok, Justin J.;Guironnet, Damien;Diao, Ying
- 通讯作者:Diao, Ying
Materials Design of Highly Branched Bottlebrush Polymers at the Intersection of Modeling, Synthesis, Processing, and Characterization
- DOI:10.1021/acs.chemmater.1c04030
- 发表时间:2022-02-23
- 期刊:
- 影响因子:8.6
- 作者:Pan, Tianyuan;Dutta, Sarit;Sing, Charles E.
- 通讯作者:Sing, Charles E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Sing其他文献
Charles Sing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Sing', 18)}}的其他基金
Charge Patterning and Molecular Interactions in the Phase Behavior of Polyelectrolyte/Particle Solutions
聚电解质/颗粒溶液相行为中的电荷模式和分子相互作用
- 批准号:
2347031 - 财政年份:2024
- 资助金额:
$ 179.94万 - 项目类别:
Continuing Grant
2019 Midwest Thermodynamics and Statistical Mechanics Conference (MTSM)
2019年中西部热力学与统计力学会议(MTSM)
- 批准号:
1911505 - 财政年份:2019
- 资助金额:
$ 179.94万 - 项目类别:
Standard Grant
Molecular Motions in Flowing Semi-dilute Polymer Solutions
流动半稀聚合物溶液中的分子运动
- 批准号:
1803757 - 财政年份:2018
- 资助金额:
$ 179.94万 - 项目类别:
Standard Grant
DMREF: Dynamic Control of 3-D Printed Hierarchical Soft Materials via Computation-Guided Molecular Design
DMREF:通过计算引导分子设计动态控制 3D 打印的分层软材料
- 批准号:
1727605 - 财政年份:2017
- 资助金额:
$ 179.94万 - 项目类别:
Standard Grant
CAREER: Developing the Design Rules of Charge Sequence to Inform Polymer Self-Assembly
职业:开发电荷序列设计规则以促进聚合物自组装
- 批准号:
1654158 - 财政年份:2017
- 资助金额:
$ 179.94万 - 项目类别:
Continuing Grant
Genetic Analysis of Glycolysis in Drosophila
果蝇糖酵解的遗传分析
- 批准号:
7714499 - 财政年份:1977
- 资助金额:
$ 179.94万 - 项目类别:
Standard Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
SpyTCR-RBNP - Engineering a highly targeted and biocompatible drug delivery system for solid cancer treatment
SpyTCR-RBNP - 设计用于实体癌症治疗的高度针对性和生物相容性的药物输送系统
- 批准号:
10095606 - 财政年份:2024
- 资助金额:
$ 179.94万 - 项目类别:
Collaborative R&D
An engineering biology approach for sustainable production of omega 3 and pigments from microalgae
一种利用微藻可持续生产 omega 3 和色素的工程生物学方法
- 批准号:
10107393 - 财政年份:2024
- 资助金额:
$ 179.94万 - 项目类别:
Launchpad
Manchester Metropolitan University and Manufax Engineering Limited KTP 23_24 R3
曼彻斯特城市大学和 Manufax Engineering Limited KTP 23_24 R3
- 批准号:
10081986 - 财政年份:2024
- 资助金额:
$ 179.94万 - 项目类别:
Knowledge Transfer Network
Robert Gordon University and Katoni Engineering Limited KTP 23_24 R3
罗伯特戈登大学和卡托尼工程有限公司 KTP 23_24 R3
- 批准号:
10085219 - 财政年份:2024
- 资助金额:
$ 179.94万 - 项目类别:
Knowledge Transfer Network
Advanced Aeroponics 2: Value engineering to unlock 3x ROI in horticulture
Advanced Aeroponics 2:价值工程可实现园艺领域 3 倍的投资回报率
- 批准号:
10089184 - 财政年份:2024
- 资助金额:
$ 179.94万 - 项目类别:
Collaborative R&D
Thermal engineering in semiconductor heterojunction for space transducers
空间换能器半导体异质结的热工程
- 批准号:
DP240102230 - 财政年份:2024
- 资助金额:
$ 179.94万 - 项目类别:
Discovery Projects
Evaluating the Impact and Efficiency of Engineering the Ocean to Remove CO2
评估海洋工程去除二氧化碳的影响和效率
- 批准号:
DE240100115 - 财政年份:2024
- 资助金额:
$ 179.94万 - 项目类别:
Discovery Early Career Researcher Award
New low-cost graphene production to revolutionise engineering applications
新型低成本石墨烯生产将彻底改变工程应用
- 批准号:
2911021 - 财政年份:2024
- 资助金额:
$ 179.94万 - 项目类别:
Studentship
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 179.94万 - 项目类别:
Research Grant
Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
- 批准号:
BB/Y007735/1 - 财政年份:2024
- 资助金额:
$ 179.94万 - 项目类别:
Research Grant