I-Corps: Predictive algorithms to determine individual feed intake in beef cattle.

I-Corps:确定肉牛个体采食量的预测算法。

基本信息

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of an on-farm tool to allow animal agriculture producers to determine how much their animals are eating. Approximately 70% of an animal agriculture operation’s variable cost of production is the cost of feed. However, there are few approaches that allow producers to measure their animals’ feed intake, and the limited number of locations that have that capacity are expensive. The proposed low cost, on-farm tool would allow farmers to identify potential replacement animals that are more efficient, improve how they manage animals in the feedlot and to quantify intakes of animals grazing pasture. Currently there is no way for pasture animal intake to be determined when animals are grazing at scale. If 5% of US beef producers made use of this tool that would be 40,000 operations and likely improve the management decisions related to upwards of 500,000 to a million cattle.This I-Corps project is based on the development of a predictive algorithm to make use of daily animal weight and water intake, along with weather data, to predict daily feed intake. The proposed tool has been trained using data from a specialized feeding barn that has equipment to measure feed intake as well as animal weight and water intake. Currently, state-of-the-art systems significantly over- or under-estimate the actual feed intake. The proposed tool intends to work in situations where either there is not an expensive feed intake system or in extensive grazing pasture situations where weighing feed is not possible. The system has been validated on ~2200 animals fed in the barn and almost 100 animals grazing small plots where a ground truth can be determined for grazing feed intake. Results have shown predictions of individual daily feed intake to within 92-95% accuracy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个i-Corps项目的更广泛的影响/商业潜力是开发一种农场工具,使动物农业生产者能够确定他们的动物吃了多少。畜牧业的可变生产成本中,大约70%是饲料成本。然而,几乎没有方法允许生产商测量他们动物的饲料摄入量,而且有这种能力的有限地点的成本很高。拟议的低成本农场工具将使农民能够确定更高效的潜在替代动物,改善他们在饲养场管理动物的方式,并量化放牧动物的摄入量。目前还没有办法确定牧场动物的摄入量是在动物大规模放牧时确定的。如果5%的美国牛肉生产商使用这一工具,那么将有4万头牛进行操作,并可能改善与50万至100万头牛相关的管理决策。这个i-Corps项目基于一种预测算法的开发,该算法利用每日动物体重和水分摄入量,以及天气数据来预测每日饲料摄入量。拟议的工具已经使用一个专门的饲养场的数据进行了培训,该饲养场拥有测量饲料摄入量以及动物体重和水摄入量的设备。目前,最先进的系统严重高估或低估了实际的饲料摄入量。拟议的工具打算在没有昂贵的饲料摄取系统的情况下工作,或者在不可能称量饲料的大面积放牧情况下工作。该系统已经在大约2200只在牛舍饲养的动物和近100只放牧动物的小块土地上得到了验证,在那里可以确定放牧饲料摄入量的地面真实情况。结果显示,对个体每日饲料摄入量的预测准确率在92%-95%以内。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Wilson其他文献

Quantum and Classical Data Transmission Through Completely Depolarising Channels in a Superposition of Cyclic Orders
通过循环阶叠加的完全去极化通道进行量子和经典数据传输
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giulio Chiribella;Matthew Wilson;H. F. Chau
  • 通讯作者:
    H. F. Chau
Advances in Ketogenic Diet Therapies in Pediatric Epilepsy: A Systematic Review.
小儿癫痫生酮饮食疗法的进展:系统评价。
  • DOI:
    10.4088/pcc.23r03661
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dilshad Parveen;Vidisha Jain;Dhivya Kannan;Patali Mandava;Marzhan Urazbayeva;Che Marie;Joshua Andrew Sanjeev;Prachi Patel;Kieran McCarthy;Matthew Wilson;Urvish Patel;Ya;Devraj Chavda;Zalak Thakker
  • 通讯作者:
    Zalak Thakker
SP420 – The functional and cosmetic Riedel proceedure
  • DOI:
    10.1016/j.otohns.2009.06.721
  • 发表时间:
    2009-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Wilson;Richard Orlandi;Steven Mobley
  • 通讯作者:
    Steven Mobley
Seismic hazard and shifting channels: Exploring coseismic river response
地震危险性与河道变迁:探讨同震河流响应
  • DOI:
    10.1016/j.earscirev.2025.105042
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    10.000
  • 作者:
    Erin McEwan;Timothy Stahl;Rob Langridge;Tim Davies;Andrew Howell;Matthew Wilson
  • 通讯作者:
    Matthew Wilson
Back to BaSICS: February 2022 Annals of Emergency Medicine Journal Club
  • DOI:
    10.1016/j.annemergmed.2021.12.006
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Wilson;Rory Spiegel
  • 通讯作者:
    Rory Spiegel

Matthew Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Wilson', 18)}}的其他基金

Artificial Intelligence X-ray Imaging for Sustainable Metal Manufacturing (AIXISuMM)
用于可持续金属制造的人工智能 X 射线成像 (AIXISuMM)
  • 批准号:
    EP/X038394/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: The Impact of Digital Real Estate Technologies on Housing and Home in the US
博士论文研究:数字房地产技术对美国住房和家庭的影响
  • 批准号:
    2147833
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Uncertainty Assessments of Flood Inundation Impacts: Using spatial climate change scenarios to drive ensembles of distributed models for extremes
洪水淹没影响的不确定性评估:利用空间气候变化情景驱动极端分布式模型集合
  • 批准号:
    NE/E002293/1
  • 财政年份:
    2007
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
CRI: Navigation and the Hippocampus: Computational Models
CRI:导航和海马:计算模型
  • 批准号:
    9634339
  • 财政年份:
    1996
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    2400511
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
  • 批准号:
    10659007
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Surrogate Augmented Deep Predictive Learning for Retinopathy of Prematurity
早产儿视网膜病变的替代增强深度预测学习
  • 批准号:
    10740289
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Using Machine Learning to Improve the Predictive Accuracy of Disease Cure
使用机器学习提高疾病治疗的预测准确性
  • 批准号:
    10654253
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
VIPCare: Virtual Predictive Care workflow with integrated surveillance for optimal care protocol selection and management in at-risk prostate cancer patients
VIPCare:虚拟预测护理工作流程,具有综合监测功能,可为高危前列腺癌患者提供最佳护理方案选择和管理
  • 批准号:
    10758350
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
RII Track-4 NSF: Robust, Predictive, and Learning Guidance Algorithms for On-Orbit Servicing and Assembly Using Multiple Space Systems
RII Track-4 NSF:使用多个空间系统进行在轨维修和组装的稳健、预测和学习制导算法
  • 批准号:
    2229756
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Predictive modeling of acute rejection in pediatric heart transplant recipients
儿童心脏移植受者急性排斥反应的预测模型
  • 批准号:
    10503263
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
  • 批准号:
    10610420
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
  • 批准号:
    10420954
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了