Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
基本信息
- 批准号:10610420
- 负责人:
- 金额:$ 33.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAcute Renal Failure with Renal Papillary NecrosisAcute Respiratory Distress SyndromeAdultAdverse eventAlgorithmsArchitectureArea Under CurveArtificial IntelligenceAuthorization documentationBiological AssayBiometryBlood VesselsCaringCase StudyCessation of lifeClinicalCollaborationsComputer softwareComputersCritical IllnessDataData SetDevelopmentDevicesEffectivenessElectronic Health RecordEnsureEnvironmentEvaluationEventFast Healthcare Interoperability ResourcesFrequenciesFundingGeneral HospitalsGoalsHealthHealthcare SystemsHeterogeneityHospital CostsHospital MortalityHospitalizationHospitalsHourHypotensionIncidenceInfectionInflammationInjury to KidneyInpatientsInstitutionIntensive Care UnitsLearningLifeLiverLungMeasurementMeasuresMedicalMetadataMethodologyMethodsModelingMorbidity - disease rateOutcomePatientsPatternPerformancePharmaceutical PreparationsPilot ProjectsPopulationPredictive AnalyticsPreventionProcessReaderReproducibilityResearchResearch PersonnelRespiratory FailureRiskRisk EstimateSepsisSeptic ShockSiteTestingTimeTrainingUncertaintyVariantWorkacute careauthoritycloud baseddeep learningdemographicsdesignelectronic health record systemimprovedinterestlaboratory equipmentmortalitymulti-task learningnovelorgan injurypatient populationpatient responsepersonalized careportabilityprediction algorithmpredictive modelingpreventprognosticationprospectiveresearch and developmentresponseseptic patientstheoriestooltreatment responsetrustworthinesswardwearable device
项目摘要
Project Summary / Abstract
Sepsis, Septic Shock, Acute Kidney Injury (AKI), acute respiratory distress syndrome (ARDS) and
respiratory failure are among the top causes of hospital mortality, morbidity, and an increase in duration
and cost of hospitalization. Successful prevention and management of these conditions rely on the ability
of clinicians to estimate the risk, and ideally, to anticipate and prevent these events. Acute care settings
and in particular intensive care units (ICUs) provide an environment where an immense amount of data
is acquired, and it is expected that with the advent of wearables and biometric patches even more data
will be available in such settings. But at present, very little of these data are used effectively to
prognosticate, and the existing predictive analytics risk scores suffer from lack of generalizability across
institutions and performance degradation within the same institution over time.
The PIs on this proposal recently demonstrated that a Deep Learning-based algorithm can reliably
predict new sepsis cases in the emergency departments, general hospital wards, and ICUs by as much
as 4-6 hours in advance and an area under the curve (ROC) of 0.85-0.90. Furthermore, through a 2-year
pilot study funded via Biomedical Advanced Research and Development Authority (BARDA), we recently
joined forces in a multicenter academic consortium to retrospectively validate this algorithm at each site.
Our collaboration has resulted in a multi-center longitudinal EHR dataset of critically ill patients and has
generated several important questions and findings related to design of portable and generalizable
predictive analytics algorithms that are robust to problems arising from gaps, errors, and biases in
electronic health records (EHRs) due to workflow-related factors (e.g. staffing-level), and heterogeneity
of patient populations and measurement devices.
We propose to significantly expand our prior work by designing new deep learning architectures that are
robust to data missingness and biases introduced through the variability in process of care, 2)
development of new learning methodologies to improve generalizability of the proposed models under
data/population drifts (aka distributional changes), 3) enhanced metadata design to assist in quantifying
`conditions for use' of such algorithms via algorithmic controls, and 4) HL7 and FHIR-based prospective
implementation and testing of these methodologies to provide real-world clinical evidence for the
effectiveness of the proposed approaches. Ultimately, these novel methodologies and tools will enhance
our ability to use EHR and other types of continuously measured longitudinal data to predict adverse
events, assess patients' response to therapy, and optimize and personalize care at the beside.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAMIM NEMATI其他文献
SHAMIM NEMATI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAMIM NEMATI', 18)}}的其他基金
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
- 批准号:
10420954 - 财政年份:2022
- 资助金额:
$ 33.58万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10277331 - 财政年份:2021
- 资助金额:
$ 33.58万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10439876 - 财政年份:2021
- 资助金额:
$ 33.58万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10626899 - 财政年份:2021
- 资助金额:
$ 33.58万 - 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
- 批准号:
10827775 - 财政年份:2021
- 资助金额:
$ 33.58万 - 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
- 批准号:
10265157 - 财政年份:2020
- 资助金额:
$ 33.58万 - 项目类别:
Deep Learning and Streaming Analytics for Prediction of Adverse Events in the ICU
用于预测 ICU 不良事件的深度学习和流分析
- 批准号:
9983413 - 财政年份:2019
- 资助金额:
$ 33.58万 - 项目类别:
San Diego Biomedical Informatics Education & Research (SABER)
圣地亚哥生物医学信息学教育
- 批准号:
10616765 - 财政年份:2012
- 资助金额:
$ 33.58万 - 项目类别:
San Diego Biomedical Informatics Education & Research (SABER)
圣地亚哥生物医学信息学教育
- 批准号:
10406030 - 财政年份:2012
- 资助金额:
$ 33.58万 - 项目类别:














{{item.name}}会员




