Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records

增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析

基本信息

  • 批准号:
    10610420
  • 负责人:
  • 金额:
    $ 33.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

Project Summary / Abstract Sepsis, Septic Shock, Acute Kidney Injury (AKI), acute respiratory distress syndrome (ARDS) and respiratory failure are among the top causes of hospital mortality, morbidity, and an increase in duration and cost of hospitalization. Successful prevention and management of these conditions rely on the ability of clinicians to estimate the risk, and ideally, to anticipate and prevent these events. Acute care settings and in particular intensive care units (ICUs) provide an environment where an immense amount of data is acquired, and it is expected that with the advent of wearables and biometric patches even more data will be available in such settings. But at present, very little of these data are used effectively to prognosticate, and the existing predictive analytics risk scores suffer from lack of generalizability across institutions and performance degradation within the same institution over time. The PIs on this proposal recently demonstrated that a Deep Learning-based algorithm can reliably predict new sepsis cases in the emergency departments, general hospital wards, and ICUs by as much as 4-6 hours in advance and an area under the curve (ROC) of 0.85-0.90. Furthermore, through a 2-year pilot study funded via Biomedical Advanced Research and Development Authority (BARDA), we recently joined forces in a multicenter academic consortium to retrospectively validate this algorithm at each site. Our collaboration has resulted in a multi-center longitudinal EHR dataset of critically ill patients and has generated several important questions and findings related to design of portable and generalizable predictive analytics algorithms that are robust to problems arising from gaps, errors, and biases in electronic health records (EHRs) due to workflow-related factors (e.g. staffing-level), and heterogeneity of patient populations and measurement devices. We propose to significantly expand our prior work by designing new deep learning architectures that are robust to data missingness and biases introduced through the variability in process of care, 2) development of new learning methodologies to improve generalizability of the proposed models under data/population drifts (aka distributional changes), 3) enhanced metadata design to assist in quantifying `conditions for use' of such algorithms via algorithmic controls, and 4) HL7 and FHIR-based prospective implementation and testing of these methodologies to provide real-world clinical evidence for the effectiveness of the proposed approaches. Ultimately, these novel methodologies and tools will enhance our ability to use EHR and other types of continuously measured longitudinal data to predict adverse events, assess patients' response to therapy, and optimize and personalize care at the beside.
项目概要/摘要 败血症、败血性休克、急性肾损伤 (AKI)、急性呼吸窘迫综合征 (ARDS) 和 呼吸衰竭是医院死亡率、发病率和病程延长的主要原因之一 以及住院费用。成功预防和管理这些情况取决于能力 临床医生评估风险,理想情况下,预测和预防这些事件。急症护理设置 特别是重症监护病房 (ICU) 提供了一个可以存储大量数据的环境 已获得,并且预计随着可穿戴设备和生物识别贴片的出现,更多数据 将在此类设置中可用。但目前,这些数据很少被有效地用于 预测,而现有的预测分析风险评分缺乏跨领域的普遍性 随着时间的推移,同一机构内的绩效下降。 该提案的 PI 最近证明,基于深度学习的算法可以可靠地 预测急诊室、综合医院病房和 ICU 的新脓毒症病例 提前 4-6 小时,曲线下面积 (ROC) 为 0.85-0.90。此外,通过2年 由生物医学高级研究与发展局 (BARDA) 资助的试点研究,我们最近 联合多中心学术联盟在每个地点回顾性验证该算法。 我们的合作产生了重症患者的多中心纵向 EHR 数据集,并已 产生了与便携式和通用化设计相关的几个重要问题和发现 预测分析算法对于因差距、错误和偏差而产生的问题具有鲁棒性 由于工作流程相关因素(例如人员配置水平)和异质性而导致的电子健康记录(EHR) 患者群体和测量设备。 我们建议通过设计新的深度学习架构来显着扩展我们之前的工作 对因护理过程的可变性而引入的数据缺失和偏差具有鲁棒性,2) 开发新的学习方法,以提高所提出模型的普遍性 数据/群体漂移(又名分布变化),3)增强元数据设计以协助量化 通过算法控制来确定此类算法的“使用条件”,以及 4) HL7 和基于 FHIR 的预期 实施和测试这些方法,为以下方面提供真实世界的临床证据 所提议方法的有效性。最终,这些新颖的方法和工具将增强 我们使用 EHR 和其他类型的连续测量的纵向数据来预测不良反应的能力 事件,评估患者对治疗的反应,并优化和个性化旁边的护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHAMIM NEMATI其他文献

SHAMIM NEMATI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHAMIM NEMATI', 18)}}的其他基金

Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
  • 批准号:
    10420954
  • 财政年份:
    2022
  • 资助金额:
    $ 33.58万
  • 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
  • 批准号:
    10277331
  • 财政年份:
    2021
  • 资助金额:
    $ 33.58万
  • 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
  • 批准号:
    10439876
  • 财政年份:
    2021
  • 资助金额:
    $ 33.58万
  • 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
  • 批准号:
    10626899
  • 财政年份:
    2021
  • 资助金额:
    $ 33.58万
  • 项目类别:
GeneRAlizable Sepsis Phenotyping (GRASP) using Electronic Health Records and Continuous Monitoring Sensors
使用电子健康记录和连续监测传感器进行通用脓毒症表型分析 (GRASP)
  • 批准号:
    10827775
  • 财政年份:
    2021
  • 资助金额:
    $ 33.58万
  • 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
  • 批准号:
    10265157
  • 财政年份:
    2020
  • 资助金额:
    $ 33.58万
  • 项目类别:
Deep Learning and Streaming Analytics for Prediction of Adverse Events in the ICU
用于预测 ICU 不良事件的深度学习和流分析
  • 批准号:
    9983413
  • 财政年份:
    2019
  • 资助金额:
    $ 33.58万
  • 项目类别:
San Diego Biomedical Informatics Education & Research (SABER)
圣地亚哥生物医学信息学教育
  • 批准号:
    10616765
  • 财政年份:
    2012
  • 资助金额:
    $ 33.58万
  • 项目类别:
San Diego Biomedical Informatics Education & Research (SABER)
圣地亚哥生物医学信息学教育
  • 批准号:
    10406030
  • 财政年份:
    2012
  • 资助金额:
    $ 33.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了