Conference: UnKnot V

会议:UnKnot V

基本信息

  • 批准号:
    2348686
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

The UnKnot V Conference will be held at Seattle University in Seattle, WA on July 13-14th, 2024. UnKnot V, like the four undergraduate knot theory conferences that preceded it, will be a gathering of students who are interested in knot theory research together with their faculty and graduate student mentors. Participants who are new to knot theory and interested to learn more are also welcome to join in this community-building event. Accessible talks at UnKnot V will be given by world-renowned knot theory experts as well as students who are just beginning their work in this field. UnKnot V will also feature a mini workshop on using machine learning in knot theory research and one on recreational topology with the aim to inspire fun math outreach projects. Knot theory is an area of research which uses tools from and gives insight into many areas of mathematics, including topology, geometry, algebra, and combinatorics. There are important applications in knot theory to DNA knotting, synthetic chemistry, protein folding, and quantum computing as well as in anthropology, art, and materials science. Knot theory also lends itself to research by undergraduates since there are open problems that can be easily stated and explained but lead to mathematics with great depth. The focus of UnKnot V will be on research that has been done by undergraduates and on open problems amenable to research by students. Since experts will be brought together with the students and faculty who would like to do research in this field, this unique conference structure will allow for vertical integration from undergraduates and graduate students to faculty who are interested in mentoring students in knot theory research and experts in the field. Many opportunities for research projects will be presented. The conference webpage is: https://sites.google.com/view/unknot-v-conference/home.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
UnKnot V会议将于2024年7月13日至14日在华盛顿州西雅图的西雅图大学举行。UnKnot V,就像之前的四个本科生结理论会议一样,将是对结理论研究感兴趣的学生与他们的教师和研究生导师的聚会。欢迎对纽结理论不熟悉并有兴趣了解更多的参与者加入这个社区建设活动。在UnKnot V上,世界知名的纽结理论专家以及刚刚开始在这一领域工作的学生将进行可行的演讲。UnKnot V还将举办一个关于在结理论研究中使用机器学习的小型研讨会,以及一个关于娱乐拓扑的研讨会,旨在激发有趣的数学推广项目。纽结理论是一个研究领域,它使用工具,并深入了解数学的许多领域,包括拓扑学,几何学,代数学和组合学。结理论在DNA打结、合成化学、蛋白质折叠、量子计算以及人类学、艺术和材料科学中有重要的应用。纽结理论也适用于本科生的研究,因为有一些开放的问题可以很容易地陈述和解释,但会导致数学的深入。Unknot V的重点将是本科生已经完成的研究和学生可以研究的开放问题。由于专家将与希望在这一领域进行研究的学生和教师聚集在一起,这种独特的会议结构将允许从本科生和研究生到有兴趣指导结理论研究学生和该领域专家的教师的垂直整合。将提供许多研究项目的机会。该会议的网页是:https://sites.google.com/view/unknot-v-conference/home.This奖反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allison Henrich其他文献

The Arc Unknotting Game
弧线解结游戏
  • DOI:
    10.1080/07468342.2023.2285866
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Cericola;Justus Curry;Allison Henrich;Mitchell Rask
  • 通讯作者:
    Mitchell Rask

Allison Henrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allison Henrich', 18)}}的其他基金

REU Site: Seattle University Mathematics Early Research (SUMmER)
REU 网站:西雅图大学数学早期研究 (SUMmER)
  • 批准号:
    1460537
  • 财政年份:
    2015
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant

相似海外基金

Research on representation theoretic structures of unknot detectors
不结点探测器的表示理论结构研究
  • 批准号:
    22740048
  • 财政年份:
    2010
  • 资助金额:
    $ 4万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on knot invariants detecting the unknot
结不变量检测结的研究
  • 批准号:
    20840038
  • 财政年份:
    2008
  • 资助金额:
    $ 4万
  • 项目类别:
    Grant-in-Aid for Young Scientists (Start-up)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了