CAREER: Geometric Methods in Hyperbolic Partial Differential Equations
职业:双曲偏微分方程中的几何方法
基本信息
- 批准号:1914537
- 负责人:
- 金额:$ 14.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many of our most celebrated physical theories are based on wave-like partial differential equations (PDEs). Important examples include the Einstein equations of general relativity (which form the basis of modern cosmology), the Euler equations of fluid mechanics, the equations of elasticity, and the equations of crystal optics. Despite hundreds of years of mathematical progress, major gaps remain in our understanding of solutions. For example, although it is expected that solutions often "become infinite" there are few cases in which mathematicians have found a proof. Moreover, in other contexts, it is not even known if the equations have solutions. Thus, we still do not have a definitive understanding of the physical predictions of many equations of classical physics. The main obstacle is that the aforementioned equations are extremely difficult to study except under unrealistic simplifying assumptions. However, there have been some recent advancements in resolving some of these difficulties. For example, recent results provide a detailed description of Big Bang formation in solutions to the Einstein equations and shocks in solutions to the Euler and related equations. A major goal of this project is to extend these results to apply to other physically relevant equations and regimes. This work will provide new insight on the long-time behavior of waves and on the ways in which various physical theories can break down. This research project involves the rigorous study of quasilinear hyperbolic PDEs and has three main research goals. The first is to provide a detailed description of singularity formation in various quasilinear wave-like equations of physical significance, with an emphasis on avoiding symmetry assumptions whenever possible. Examples include various Einstein-matter equations, the Euler equations, and the equations of elasticity. This research will expand our understanding of singularity formation by enlarging the class of equations and the class of initial conditions that are known to lead to blow-up. The second research goal is to prove local well-posedness for a class of physically relevant quasilinear hyperbolic problems with a free boundary along which the hyperbolicity of the equations degenerates. The third is to develop new tools for understanding the behavior of solutions to quasilinear hyperbolic PDEs with multiple characteristics in contexts where knowledge of the precise characteristics is essential. An ultimate goal is to use these tools to prove that for such equations, under suitable assumptions on the nonlinearities and data, shock formation occurs and is stable. This proposal has several educational components that are intimately connected to the research problems. Many of the problems have components that can be investigated by advanced undergraduates, and the PI plans to supervise undergraduate research projects. There are also components suitable for PhD students. Moreover, the PI is organizing, with three co-organizers, a pair of summer schools targeted at advanced undergraduates and beginning graduate students from across the US and beyond. The PI will also develop curriculum materials that will be made freely available to the public online.
我们许多最著名的物理理论都是基于波动偏微分方程(PDE)。重要的例子包括广义相对论的爱因斯坦方程(构成现代宇宙学的基础),流体力学的欧拉方程,弹性方程和晶体光学方程。尽管数学已经发展了数百年,但我们对解的理解仍然存在重大差距。例如,尽管人们期望解经常“变得无穷大”,但数学家找到证明的情况很少。此外,在其他情况下,甚至不知道方程是否有解。因此,我们仍然没有对许多经典物理方程的物理预测有明确的理解。主要的障碍是,上述方程极难研究,除非在不切实际的简化假设下。然而,最近在解决其中一些困难方面取得了一些进展。例如,最近的结果提供了一个详细的描述大爆炸形成的解决方案,爱因斯坦方程和冲击的解决方案,欧拉方程和相关的。这个项目的一个主要目标是将这些结果扩展到其他物理相关的方程和制度。这项工作将为波的长期行为以及各种物理理论的崩溃提供新的见解。本研究计画主要针对拟线性双曲型偏微分方程进行严谨的研究,并有三个主要的研究目标。第一个是提供一个详细的描述奇异性的形成在各种准线性波动方程的物理意义,重点是避免对称性假设,只要可能。例子包括各种爱因斯坦物质方程,欧拉方程和弹性方程。这项研究将扩大我们的理解奇异性的形成,扩大类方程和类的初始条件,已知导致爆破。第二个研究目标是证明一类具有自由边界的拟线性双曲问题的局部适定性,其中方程的双曲性沿自由边界沿着退化。第三是开发新的工具,了解的行为的解决方案,拟线性双曲型偏微分方程的多个特点的背景下,知识的精确特性是必不可少的。最终的目标是使用这些工具来证明,对于这样的方程,在适当的假设下的非线性和数据,冲击形成的发生和稳定。 这项建议有几个教育组成部分,与研究问题密切相关。许多问题都有可以由高年级本科生调查的组成部分,PI计划监督本科生的研究项目。也有适合博士生的组件。此外,PI正在与三个联合组织者一起组织一对针对来自美国及其他地区的高级本科生和研究生的暑期学校。PI还将开发课程材料,并在网上免费提供给公众。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jared Speck其他文献
The emergence of the singular boundary from the crease in $3D$ compressible Euler flow
$3D$ 可压缩欧拉流中奇异边界的出现
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
L. Abbrescia;Jared Speck - 通讯作者:
Jared Speck
Stable ODE-type blowup for some quasilinear wave equations with derivative-quadratic nonlinearities
- DOI:
10.2140/apde.2020.13.93 - 发表时间:
2017-09 - 期刊:
- 影响因子:2.2
- 作者:
Jared Speck - 通讯作者:
Jared Speck
The nonlinear future stability of the FLRW family of solutions to the Euler–Einstein system with a positive cosmological constant
- DOI:
10.1007/s00029-012-0090-6 - 发表时间:
2011-02 - 期刊:
- 影响因子:0
- 作者:
Jared Speck - 通讯作者:
Jared Speck
The Maximal Development of Near-FLRW Data for the Einstein-Scalar Field System with Spatial Topology $${\mathbb{S}^3}$$
- DOI:
10.1007/s00220-018-3272-z - 发表时间:
2018-10-19 - 期刊:
- 影响因子:2.600
- 作者:
Jared Speck - 通讯作者:
Jared Speck
A Summary of Some New Results on the Formation of Shocks in the Presence of Vorticity
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jared Speck - 通讯作者:
Jared Speck
Jared Speck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jared Speck', 18)}}的其他基金
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
Geometric Methods for Singular Solutions to Nonlinear Hyperbolic Partial Differential Equations
非线性双曲偏微分方程奇异解的几何方法
- 批准号:
2054184 - 财政年份:2021
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
CAREER: Geometric Methods in Hyperbolic Partial Differential Equations
职业:双曲偏微分方程中的几何方法
- 批准号:
1454419 - 财政年份:2015
- 资助金额:
$ 14.09万 - 项目类别:
Continuing Grant
The Global Analysis of Fluids in General Relativity
广义相对论中流体的整体分析
- 批准号:
1162211 - 财政年份:2012
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Geometric and Combinatorial Methods for Distribution-Free Inference and Dependent Network Data
职业:无分布推理和相关网络数据的几何和组合方法
- 批准号:
2046393 - 财政年份:2021
- 资助金额:
$ 14.09万 - 项目类别:
Continuing Grant
CAREER: Variational and Geometric Methods for Data Analysis
职业:数据分析的变分和几何方法
- 批准号:
1752202 - 财政年份:2018
- 资助金额:
$ 14.09万 - 项目类别:
Continuing Grant
CAREER: Robust Methods for High-Dimensional Signal Processing under Geometric Constraints
职业:几何约束下高维信号处理的鲁棒方法
- 批准号:
1818571 - 财政年份:2018
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
CAREER: Robust Methods for High-Dimensional Signal Processing under Geometric Constraints
职业:几何约束下高维信号处理的鲁棒方法
- 批准号:
1650449 - 财政年份:2017
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
CAREER: Bridging Geometric Design and Aerodynamic Simulation of Turbomachinery: An Integrative Design-Through-Analysis Framework Enabled by Embedded Domain Methods
职业:桥接涡轮机械的几何设计和空气动力仿真:嵌入式域方法支持的集成设计分析框架
- 批准号:
1651577 - 财政年份:2017
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
CAREER: Geometric Methods in Hyperbolic Partial Differential Equations
职业:双曲偏微分方程中的几何方法
- 批准号:
1454419 - 财政年份:2015
- 资助金额:
$ 14.09万 - 项目类别:
Continuing Grant
CAREER: Integrating Geometric, Probabilistic, and Topological Methods for Phase Space Transport in Dynamical Systems
职业:集成几何、概率和拓扑方法用于动力系统中的相空间传输
- 批准号:
1150456 - 财政年份:2012
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
CAREER: Geometric and Topological Methods in Shape Analysis, with Applications in Molecular Biology
职业:形状分析中的几何和拓扑方法及其在分子生物学中的应用
- 批准号:
0747082 - 财政年份:2008
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
CAREER: Geometric and Appearance Based Methods for Model Acquisition
职业:基于几何和外观的模型获取方法
- 批准号:
0347774 - 财政年份:2004
- 资助金额:
$ 14.09万 - 项目类别:
Continuing Grant
CAREER: Geometric Methods in Cryptography
职业:密码学中的几何方法
- 批准号:
0093029 - 财政年份:2001
- 资助金额:
$ 14.09万 - 项目类别:
Continuing Grant