The Global Analysis of Fluids in General Relativity

广义相对论中流体的整体分析

基本信息

  • 批准号:
    1162211
  • 负责人:
  • 金额:
    $ 14.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The focus of this proposal is the study of the global nonlinear behavior of solutions to the relativistic Euler equations, which are the fundamental PDEs of relativistic fluid mechanics. In particular, the principal investigator will study the effect that spacetime expansion has on the global behavior of fluids. A primary goal is to understand the minimal expansion rate that is capable of suppressing the formation of shocks in solutions that are launched by small, smooth initial data. A related secondary goal is to find conditions on smooth initial data that guarantee the evolutionary formation of shocks. In a broader context, this work will advance our understanding of the global behavior of solutions to quasilinear hyperbolic PDEs on expanding Lorentzian manifolds. Attacking these problems requires the development and application of mathematical techniques lying at the interface of geometry, analysis, and fluid mechanics. Specifically, the principal investigator will use geometric energy methods to derive dissipative and dispersive estimates for solutions to hyperbolic PDEs.The projects in this proposal are expected to help provide rigorous mathematical justification for some of the most fundamental predictions of cosmology, many of which are based on the behavior of explicit solutions to the relativistic Euler equations; in cosmology, much of the "normal matter" content of the universe is assumed to be effectively modeled by a fluid. It is especially important to understand the effect that spacetime expansion has on the behavior of fluids, for experimental observations indicate that our own universe is undergoing accelerated expansion. Although the physical picture of the fluid behavior set forth by the standard cosmological model is by now well-established, a full mathematical justification of its predictions has yet to emerge. In particular, in order for the explicit fluid solutions to have predictive value, it is essential to show that they are globally stable under small perturbations of their initial conditions; this is one of the major proposal goals. On the other hand, the principal investigator's investigation of shock formation may expose some limitations of the fluid model in cosmology. In addition to conducting research, the principal investigator will also supervise undergraduate research projects connected to the main themes of this proposal.
本文的重点是研究相对论性欧拉方程解的全局非线性行为,这是相对论性流体力学的基本偏微分方程。特别是,首席研究员将研究时空膨胀对流体整体行为的影响。主要目标是了解能够抑制由小而平滑的初始数据发起的溶液中冲击形成的最小膨胀率。一个相关的次要目标是在平滑初始数据上找到保证冲击演化形成的条件。在更广泛的背景下,这项工作将促进我们对扩展洛伦兹流形上拟线性双曲偏微分方程解的整体行为的理解。解决这些问题需要在几何、分析和流体力学的界面上发展和应用数学技术。具体来说,首席研究员将使用几何能量方法来推导双曲偏微分方程解的耗散和色散估计。该提案中的项目有望帮助为一些最基本的宇宙学预测提供严格的数学证明,其中许多预测是基于相对论性欧拉方程显式解的行为;在宇宙学中,宇宙中的大部分“正常物质”都被认为是由流体有效地模拟出来的。了解时空膨胀对流体行为的影响尤为重要,因为实验观测表明,我们自己的宇宙正在经历加速膨胀。尽管标准宇宙学模型所描述的流体行为的物理图景现在已经建立起来,但其预测的完整数学证明尚未出现。特别是,为了使显式流体解具有预测价值,必须证明它们在初始条件的小扰动下是全局稳定的;这是提案的主要目标之一。另一方面,首席研究员对激波形成的研究可能会暴露出宇宙学中流体模型的一些局限性。除了进行研究外,首席研究员还将监督与本提案主题相关的本科生研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jared Speck其他文献

The emergence of the singular boundary from the crease in $3D$ compressible Euler flow
$3D$ 可压缩欧拉流中奇异边界的出现
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Abbrescia;Jared Speck
  • 通讯作者:
    Jared Speck
Stable ODE-type blowup for some quasilinear wave equations with derivative-quadratic nonlinearities
  • DOI:
    10.2140/apde.2020.13.93
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Jared Speck
  • 通讯作者:
    Jared Speck
The nonlinear future stability of the FLRW family of solutions to the Euler–Einstein system with a positive cosmological constant
  • DOI:
    10.1007/s00029-012-0090-6
  • 发表时间:
    2011-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jared Speck
  • 通讯作者:
    Jared Speck
The Maximal Development of Near-FLRW Data for the Einstein-Scalar Field System with Spatial Topology $${\mathbb{S}^3}$$
A Summary of Some New Results on the Formation of Shocks in the Presence of Vorticity
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jared Speck
  • 通讯作者:
    Jared Speck

Jared Speck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jared Speck', 18)}}的其他基金

Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Standard Grant
Geometric Methods for Singular Solutions to Nonlinear Hyperbolic Partial Differential Equations
非线性双曲偏微分方程奇异解的几何方法
  • 批准号:
    2054184
  • 财政年份:
    2021
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Standard Grant
CAREER: Geometric Methods in Hyperbolic Partial Differential Equations
职业:双曲偏微分方程中的几何方法
  • 批准号:
    1914537
  • 财政年份:
    2018
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Continuing Grant
CAREER: Geometric Methods in Hyperbolic Partial Differential Equations
职业:双曲偏微分方程中的几何方法
  • 批准号:
    1454419
  • 财政年份:
    2015
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Numerical simulation and vortex analysis of flow turbulence in viscoelastic fluids
粘弹性流体湍流数值模拟与涡流分析
  • 批准号:
    RGPIN-2022-04720
  • 财政年份:
    2022
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Discovery Grants Program - Individual
An Automated Microfluidics Technology for Minimally Disruptive Analysis of Cells and Fluids within Living 3D Cultures
用于对活体 3D 培养物中的细胞和液体进行最小破坏性分析的自动化微流体技术
  • 批准号:
    10414469
  • 财政年份:
    2022
  • 资助金额:
    $ 14.74万
  • 项目类别:
Metagenomic analysis of tissues and body fluids in neonatal hepatitis and encephalitis
新生儿肝炎和脑炎组织和体液的宏基因组分析
  • 批准号:
    22K19494
  • 财政年份:
    2022
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Analysis and Numerics for the Dynamics of Fluids under Magnetic Forces
职业:磁力下流体动力学的分析和数值模拟
  • 批准号:
    2042454
  • 财政年份:
    2021
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Continuing Grant
Nanoparticle Tracking Analysis Platform for in vitro Characterization of Engineered and Natural Nanoparticles in Biological Fluids
用于生物流体中工程纳米颗粒和天然纳米颗粒体外表征的纳米颗粒跟踪分析平台
  • 批准号:
    RTI-2021-00374
  • 财政年份:
    2020
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Research Tools and Instruments
Mathematical analysis of inverse problems and modelling for complex fluids and diffusion in heterogeneous media
逆问题的数学分析以及复杂流体和非均匀介质中扩散的建模
  • 批准号:
    20H00117
  • 财政年份:
    2020
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical analysis of fluids with electrical effects
具有电效应的流体的数学分析
  • 批准号:
    19K23408
  • 财政年份:
    2019
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Formulation of Numerical Flow Analysis System for Floc-Forming Fluids Based on Population Balance Equations
基于群体平衡方程的絮凝流体数值流分析系统的建立
  • 批准号:
    19K04199
  • 财政年份:
    2019
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithms and Analysis for Models in Materials Science, Fluids, and Probability
材料科学、流体和概率模型的算法和分析
  • 批准号:
    1909035
  • 财政年份:
    2019
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Continuing Grant
Numerical Methods and Analysis for Interfacial Flow with Ionic Fluids and Surfactants
离子流体和表面活性剂界面流动的数值方法与分析
  • 批准号:
    1909407
  • 财政年份:
    2019
  • 资助金额:
    $ 14.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了