A description of surface dynamics
表面动力学的描述
基本信息
- 批准号:2400008
- 负责人:
- 金额:$ 24.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project seeks to understand the mechanisms that underlie the transition of a dynamical system from an ordered state to a random (chaotic) state. In other words, the aim is to understand the processes through which a system's behavior evolves from periodicity toward chaos, as one or more governing parameters are varied. A related goal is to identify the primary bifurcation responsible for qualitative changes exhibited by a dynamical system. While such comprehension has previously been attained for low-dimensional dynamical systems, this project introduces a novel approach to transcend the low-dimensional limitation. The project will offer new conceptual ideas and approaches to provide fresh perspectives on advances in mathematics and science. Additionally, the project will facilitate the training of graduate students directly engaged in the research, and will afford educational opportunities to undergraduate students through the organization of a summer school presenting topics in mathematics, including topics related to dynamical systems.The theory of one-dimensional dynamical systems successfully explains the depth and complexity of chaotic phenomena in concert with a description of the dynamics of typical orbits for typical maps. Its remarkable universality properties supplement this understanding with powerful geometric tools. In the two-dimensional setting, the range of possible dynamical scenarios that can emerge is at present only partially understood, and a general framework for those new phenomena that do not occur for one-dimensional dynamics remains to be developed. In prior work supported by the NSF, the principal investigator introduced a large open class of two-dimensional dynamical systems, including the classical Henon family without the restriction of large area contraction, that is amenable to obtaining results as in the one-dimensional case. Moreover, major progress was reached to understand the transition from zero entropy to positive entropy using renormalization schemes. The present project has several components. First, existing renormalization schemes will be adapted to the positive entropy realm. Next, initial steps towards a characterization of dissipative diffeomorphisms in more general contexts will be addressed. Finally, the principal investigator will seek to develop the theory of differentiable renormalization without an a priori assumption of proximity to the one-dimensional setting. These results will open the door to a global description of dissipative diffeomorphisms and their behavior under perturbation, bringing both new tools and new perspectives to smooth dynamical systems theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在了解动力系统从有序状态向随机(混沌)状态转变的机制。换句话说,其目的是了解随着一个或多个控制参数的变化,系统行为从周期性演变为混沌的过程。一个相关的目标是确定导致动力系统表现出的质变的主要分叉。虽然以前已经对低维动力系统进行了这种理解,但该项目引入了一种超越低维限制的新方法。该项目将提供新的概念思想和方法,为数学和科学的进步提供新的视角。此外,该项目还将促进直接参与研究的研究生的培训,并将通过组织暑期学校提供数学主题(包括与动力系统相关的主题)的本科生教育机会。一维动力系统理论与典型地图的典型轨道动力学描述相结合,成功地解释了混沌现象的深度和复杂性。其卓越的普适性通过强大的几何工具补充了这种理解。在二维环境中,目前仅部分了解可能出现的动力学场景的范围,并且对于一维动力学不会发生的那些新现象的通用框架仍有待开发。在 NSF 支持的先前工作中,首席研究员引入了一个大型开放类二维动力系统,包括不受大面积收缩限制的经典 Henon 族,可以像一维情况一样获得结果。此外,使用重整化方案在理解从零熵到正熵的转变方面取得了重大进展。目前的项目有几个组成部分。首先,现有的重整化方案将适应正熵领域。接下来,将讨论在更一般的背景下表征耗散微分同胚的初步步骤。最后,主要研究者将寻求发展可微重正化理论,而无需先验地假设接近一维设置。这些结果将为耗散微分同胚及其扰动行为的全球描述打开大门,为平滑动力系统理论带来新工具和新视角。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Enrique Pujals其他文献
H'enon maps: a list of open problems
Henon 地图:未决问题列表
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Pierre Berger;Eric Bedford;Fabrizio Bianchi;Xavier Buff;Sylvain Crovisier;Tien;Romain Dujardin;Charles Favre;Tanya Firsova;Patrick Ingram;Yutaka Ishii;L. Palmisano;Enrique Pujals;Jasmin Raissy;Sonja vStimac;Gabriel Vigny - 通讯作者:
Gabriel Vigny
Enrique Pujals的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Enrique Pujals', 18)}}的其他基金
相似国自然基金
“surface-17”量子纠错码在超导量子电路中的实现
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
- 批准号:41974039
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
基于surface hopping方法探索有机半导体中激子解体机制
- 批准号:LY19A040007
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于强自旋轨道耦合纳米线自旋量子比特的Surface code量子计算实验研究
- 批准号:11574379
- 批准年份:2015
- 资助金额:73.0 万元
- 项目类别:面上项目
全空间中临界Surface Quasi-geostrophic方程的全局吸引子及其分形维数
- 批准号:11426209
- 批准年份:2014
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
AdS/CFT对偶的研究
- 批准号:11305131
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
AdS/CFT对偶中的非局域算符
- 批准号:11247231
- 批准年份:2012
- 资助金额:5.0 万元
- 项目类别:专项基金项目
表面引发聚合反应对材料表面疏水性影响的计算机模拟研究
- 批准号:21104025
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
职业因素致慢性肌肉骨骼损伤模型及防控研究
- 批准号:81172643
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
浸润特性调制的统计热力学研究
- 批准号:21173271
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Investigating Fluid Surface Dynamics in Constrained Geometries
职业:研究受限几何形状中的流体表面动力学
- 批准号:
2340259 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Continuing Grant
Evolution, Deformation and Dynamics of the Indo-Australian Plate: A New Seismological Approach
印度-澳大利亚板块的演化、变形和动力学:一种新的地震学方法
- 批准号:
22KF0012 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Fundamentals of Conformational and Surface Water Dynamics in Supramolecular Nanofibers
职业:超分子纳米纤维的构象和表面水动力学基础
- 批准号:
2331196 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Continuing Grant
CAREER: Particle dynamics at the free surface: waves, turbulence, and microplastics
职业:自由表面的粒子动力学:波浪、湍流和微塑料
- 批准号:
2237550 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Continuing Grant
Active control of ion diffusion dynamics at the electrolyte/electrode interface by utilizing mixed anion surface
利用混合阴离子表面主动控制电解质/电极界面的离子扩散动力学
- 批准号:
23KK0104 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Pharmacokinetics-Based DNA-Encoded Library Screening
基于药代动力学的 DNA 编码文库筛选
- 批准号:
10644211 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Defining the role of mechanoresponsive adipocyte-to-fibroblast transition in wound fibrosis.
定义机械反应性脂肪细胞向成纤维细胞转变在伤口纤维化中的作用。
- 批准号:
10654464 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Regulation of KRAS plasma membrane targeting by defined glycosphingolipids.
通过特定的鞘糖脂调节 KRAS 质膜靶向。
- 批准号:
10718459 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Development of edible sorbent therapies to mitigate dietary exposures to per- and polyfluoroalkyl substances (PFAS)
开发可食用吸附剂疗法以减少膳食中全氟烷基物质和多氟烷基物质 (PFAS) 的暴露
- 批准号:
10590799 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Combining Molecular Simulations and Biophysical Methods to Characterize Conformational Dynamics of the HIV-1 Envelope Glycoprotein
结合分子模拟和生物物理方法来表征 HIV-1 包膜糖蛋白的构象动力学
- 批准号:
10749273 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:














{{item.name}}会员




