Sharp Eigenvalue Inequalities and Minimal Surfaces

锐特征值不等式和极小曲面

基本信息

  • 批准号:
    2104254
  • 负责人:
  • 金额:
    $ 16.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

This project is broadly concerned with the subject of spectral geometry, which studies the relation between certain analytic invariants (called spectra) of objects and the shape (or geometry) of these objects. A classical example of a spectrum is a Laplacian spectrum. It is a sequence of numbers encoding the information about many physical properties of an object such as elasticity, heat and sound propagations and many others. More specifically, this project deals with the spectral geometry of special shapes such as soap films. The geometry of soap films is a central subject of modern geometric analysis with applications far beyond the one suggested by their name, most prominently to mathematical theory of general relativity. Spectral geometry of soap films is an exciting novel area of research on the interface of spectral theory and geometry. The inherent interdisciplinary nature of this field results in a fruitful exchange of ideas between spectral theory and geometric analysis. The goal of the project is to further develop the techniques and ideas introduced the recent years, to investigate their applications beyond spectral geometry and to interest young researchers in this new promising subject. The project also includes summer research opportunities for undergraduate students. The project is devoted to the study of sharp isoperimetric inequalities for eigenvalues of natural geometric operators on manifolds. The underlying principle of the field is the correspondence between optimal metrics for such inequalities and minimal submanifolds. As a result, a variety of methods can be applied to this problem and advances in the field often result in interesting information on the geometry of minimal submanifolds. The following four problems are identified as the focus of the project. The first goal is to extend PI’s prior results on the explicit form of the sharp isoperimetric inequality for all Laplacian eigenvalues on the projective plane to the case of more complicated surfaces, starting with a torus. The second project will study the regularity and stability of optimal metrics. This will be achieved using the energy min-max characterization of the optimal eigenvalue inequalities obtained in collaboration with D. Stern. The third goal is to investigate the asymptotic behavior of optimal metrics for the first Steklov eigenvalue as the number of boundary components becomes unbounded. Numerical simulations predict that a novel geometric phenomenon manifests itself in this regime: the corresponding free boundary minimal surfaces converge to a closed minimal surface in the boundary. The aim is to verify this theoretically and further understand the mechanisms of such convergence. Finally, the project will develop the theory of isoperimetric inequalities for eigenvalues of Dirac operator following the framework of Laplace and Steklov eigenvalues. Broader impacts include co-organizing conferences and mentoring undergraduate students in summer research projects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目广泛关注光谱几何的主题,研究对象的某些解析不变量(称为光谱)与这些对象的形状(或几何)之间的关系。 谱的一个经典例子是拉普拉斯谱。 它是一个数字序列,编码了关于物体的许多物理属性的信息,如弹性,热和声音传播等。 更具体地说,这个项目涉及特殊形状,如肥皂膜的光谱几何。肥皂膜的几何是现代几何分析的中心课题,其应用远远超出其名称所暗示的,最突出的是广义相对论的数学理论。 肥皂膜的光谱几何是光谱理论与几何学结合的一个新的研究领域。 这一领域固有的跨学科性质导致了光谱理论和几何分析之间富有成效的思想交流。该项目的目标是进一步发展近年来引入的技术和思想,研究它们在光谱几何学之外的应用,并使年轻的研究人员对这一新的有前途的学科感兴趣。该项目还包括本科生的夏季研究机会。该项目致力于研究流形上自然几何算子特征值的尖锐等周不等式。 该领域的基本原理是这些不等式的最优度量与极小子流形之间的对应关系。 因此,各种各样的方法可以应用于这个问题,在该领域的进展往往导致有趣的信息的几何极小子流形。 以下四个问题被确定为该项目的重点。 第一个目标是扩展PI的先前结果的明确形式的尖锐的等周不等式的所有拉普拉斯特征值的投影平面上的情况下,更复杂的表面,从一个环面。 第二个项目将研究最优度量的规律性和稳定性。 这将通过与D。胸骨切开术组 第三个目标是研究当边界分量的数量变得无界时第一个斯捷克洛夫特征值的最佳度量的渐进行为。 数值模拟预测,一个新的几何现象体现在这一制度:相应的自由边界极小曲面收敛到一个封闭的极小曲面的边界。目的是从理论上验证这一点,并进一步了解这种收敛的机制。 最后,本计画将在拉普拉斯与斯捷克洛夫特征值的框架下,发展狄拉克算子特征值的等周不等式理论。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Antoine Song其他文献

Random minimal surfaces in spheres
球体中的随机最小曲面
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antoine Song
  • 通讯作者:
    Antoine Song
Existence of infinitely many minimal hypersurfaces in closed manifolds
闭流形中无限多个最小超曲面的存在性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Antoine Song
  • 通讯作者:
    Antoine Song
Scalar curvature and volume entropy of hyperbolic 3-manifolds
双曲3流形的标量曲率和体积熵
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Demetre Kazaras;Antoine Song;Kai Xu
  • 通讯作者:
    Kai Xu
On certain quantifications of Gromov’s nonsqueezing theorem
关于格罗莫夫的某些量化
  • DOI:
    10.2140/gt.2024.28.1113
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Sackel;Antoine Song;Umut Varolgunes;Jonathan J. Zhu
  • 通讯作者:
    Jonathan J. Zhu
Area rigidity of minimal surfaces in three-manifolds of positive scalar curvature
正标量曲率三流形中最小曲面的面积刚度

Antoine Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Antoine Song', 18)}}的其他基金

Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
  • 批准号:
    2350508
  • 财政年份:
    2024
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Standard Grant

相似海外基金

Fast and accurate algorithms for solving large eigenvalue problems
用于解决大型特征值问题的快速准确的算法
  • 批准号:
    23K11226
  • 财政年份:
    2023
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Standard Grant
PRIMES: The Inverse Eigenvalue Problem for Graphs and Collaboration to Promote Inclusivity in Undergraduate Mathematics Education
PRIMES:图的反特征值问题和协作以促进本科数学教育的包容性
  • 批准号:
    2331072
  • 财政年份:
    2023
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Standard Grant
Study of high performance and accuracy eigenvalue solvers for quantum many-body systems
量子多体系统高性能、高精度特征值求解器研究
  • 批准号:
    22K12052
  • 财政年份:
    2022
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on the Behaviour of Eigenvalue Multiplicities Associated with Graphs
与图相关的特征值重数行为的研究
  • 批准号:
    575956-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Laplacian-eigenvalue maximization and minimal surface
拉普拉斯特征值最大化和最小曲面
  • 批准号:
    22H01122
  • 财政年份:
    2022
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Invariants of gas and fluid flows and exact solutions to boundary eigenvalue problems
气体和流体流动的不变量以及边界特征值问题的精确解
  • 批准号:
    RGPIN-2022-03404
  • 财政年份:
    2022
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Discovery Grants Program - Individual
Fast and accurate eigenvalue calculations by hierarchical low-rank approximation and its application to large-scale electronic structure calculations
分层低阶近似快速准确的特征值计算及其在大规模电子结构计算中的应用
  • 批准号:
    22H03598
  • 财政年份:
    2022
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Constructions of discrete integrable systems with eigenvalue preserving transformations and their asymptotic analysis
具有特征值保持变换的离散可积系统的构造及其渐近分析
  • 批准号:
    21K13844
  • 财政年份:
    2021
  • 资助金额:
    $ 16.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Minimal Surfaces and Eigenvalue Problems
最小曲面和特征值问题
  • 批准号:
    563506-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 16.16万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了