Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
基本信息
- 批准号:2401388
- 负责人:
- 金额:$ 35.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical Summary:Quantum materials represent a diverse class of systems at the forefront of materials research. These materials host several novel and highly tunable states of matter, each with transformative potential across different science and technology sectors. Modeling these systems is incredibly challenging, however, and often requires the development and use of advanced computational methods. This project focuses on performing state-of-the-art numerical simulations of quantum materials where the electrons interact strongly with the motion of the atoms. While these interactions are believed to play a key role in different families of quantum materials, previous numerical studies have often concentrated on oversimplified models with unrealistic parameters primarily for various technical reasons. This aspect has generally prevented the scientific community from obtaining definitive answers to how these interactions influence the properties of different materials. The PI’s team will leverage new simulation capabilities to perform detailed simulations of different quantum materials while including realistic descriptions of the interactions between the electrons and lattice of atoms that form the material. The team will also provide predictions for various spectroscopic measurements to guide future experiments on these materials. Combined, this project will help identify organizing principles for quantum materials and facilitate their use in future scientific and technological applications. This project will also broaden participation in computational science and provide training in cutting-edge computational methods to enhance the scientific workforce. For example, the PI’s team will develop new training materials and open-source codes for performing numerical simulations of quantum materials, which will be disseminated in partnership with the University of Tennessee’s Center for Advanced Materials & Manufacturing, an NSF MRSEC center. Finally, the PI will continue existing efforts aimed at increasing opportunities for underrepresented minorities in physics through partnerships with the APS Bridge and Nuclear Physics in Eastern Tennessee programs.Technical Summary:Understanding the properties of strongly correlated quantum materials is a forefront challenge for the scientific community. These materials often host strong electron-electron and electron-phonon (e-ph) interactions, which produce correlated electron liquids that defy theoretical descriptions based on single-particle theories. Modeling their behavior often requires nonperturbative numerical methods; however, addressing realistic e-ph interactions remains as a key challenge. This project addresses this problem by applying state-of-the-art quantum Monte Carlo methods to study broad classes of models for quantum materials hosting strong e-ph interactions, leveraging a new open-source implementation of the determinant quantum Monte Carlo (DQMC) algorithm developed by the PI’s group. This code can simulate a broad class of Hamiltonians and uses hybrid Monte Carlo methods to sample the phonon fields efficiently and overcome the long autocorrelation times typically associated with these simulations. The PI and his team will use these capabilities to perform numerically exact simulations of models beyond the canonical Holstein model with physically realistic descriptions of the phonon subsystem. Specifically, they will study how the e-ph coupling influences the emergent properties of materials ranging from unconventional superconductors to kagome metals to graphene-derived systems. They will also predict spectroscopic measurements on such systems to guide experimental studies and provide crucial validation of their results. A particular focus for this project is on generalized Su-Schrieffer-Heeger-like e-ph interactions, where the atomic motion couples the electron’s kinetic energy via a modulation of the overlap integral. This interaction has been linked to novel phenomena ranging from mobile (bi)polarons, high-temperature superconductivity, antiferromagnetism, novel charge or bond orders, and topological states of matter. This project will also broaden participation in computational science and provide training in cutting-edge computational methods to enhance the scientific workforce. For example, the PI’s team will develop new training materials and open-source codes for performing numerical simulations of quantum materials, which will be disseminated in partnership with the University of Tennessee’s Center for Advanced Materials & Manufacturing, an NSF MRSEC center. Finally, the PI will continue existing efforts to increase opportunities for underrepresented minorities in physics through partnerships with the APS Bridge and Nuclear Physics in Eastern Tennessee programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结:量子材料代表了材料研究前沿的不同类别的系统。这些材料拥有几种新颖且高度可调的物质状态,每种状态在不同的科学和技术领域都具有变革潜力。然而,对这些系统进行建模是非常具有挑战性的,并且通常需要开发和使用先进的计算方法。这个项目的重点是对量子材料进行最先进的数值模拟,其中电子与原子的运动强烈相互作用。虽然这些相互作用被认为在不同的量子材料家族中起着关键作用,但以前的数值研究往往集中在过于简化的模型上,主要是由于各种技术原因,这些模型具有不切实际的参数。这方面通常阻碍了科学界对这些相互作用如何影响不同材料的性质获得明确的答案。PI的团队将利用新的模拟能力对不同的量子材料进行详细的模拟,同时包括对形成材料的电子和原子晶格之间相互作用的真实描述。该团队还将为各种光谱测量提供预测,以指导未来对这些材料的实验。结合起来,这个项目将有助于确定量子材料的组织原理,并促进它们在未来科学和技术应用中的使用。该项目还将扩大对计算科学的参与,并提供尖端计算方法的培训,以增强科学劳动力。例如,PI的团队将开发新的训练材料和开源代码,用于执行量子材料的数值模拟,这将与田纳西大学的先进材料和制造中心(NSF MRSEC中心)合作传播。最后,PI将继续现有的努力,旨在通过与APS桥梁和田纳西州东部核物理项目的合作,增加未被充分代表的少数民族在物理学方面的机会。技术总结:了解强相关量子材料的性质是科学界面临的一个前沿挑战。这些材料通常具有很强的电子-电子和电子-声子(e-ph)相互作用,产生相关的电子液体,这违背了基于单粒子理论的理论描述。模拟它们的行为通常需要非微扰数值方法;然而,解决现实的e-ph相互作用仍然是一个关键的挑战。该项目通过应用最先进的量子蒙特卡罗方法来研究承载强e-ph相互作用的量子材料的广泛类别模型,利用PI小组开发的新的决定量子蒙特卡罗(DQMC)算法的开源实现,解决了这个问题。该代码可以模拟广泛的哈密顿量,并使用混合蒙特卡罗方法有效地对声子场进行采样,并克服了与这些模拟通常相关的长自相关时间。PI和他的团队将利用这些能力,在标准霍尔斯坦模型之外,对声子子系统进行物理上真实的描述,对模型进行精确的数值模拟。具体来说,他们将研究e-ph耦合如何影响从非常规超导体到kagome金属到石墨烯衍生系统等材料的涌现特性。他们还将预测这些系统的光谱测量,以指导实验研究,并为其结果提供关键的验证。这个项目特别关注的是广义的Su-Schrieffer-Heeger-like e-ph相互作用,其中原子运动通过重叠积分的调制耦合电子的动能。这种相互作用与各种新现象有关,包括移动极化子、高温超导、反铁磁性、新电荷或键序以及物质的拓扑状态。该项目还将扩大对计算科学的参与,并提供尖端计算方法的培训,以增强科学劳动力。例如,PI的团队将开发新的训练材料和开源代码,用于执行量子材料的数值模拟,这将与田纳西大学的先进材料和制造中心(NSF MRSEC中心)合作传播。最后,PI将继续现有的努力,通过与APS桥梁和田纳西州东部核物理项目的合作,增加未被充分代表的少数民族在物理学方面的机会。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Johnston其他文献
Employment Incentives for Sole Parents: Labour Market Effects of Changes to Financial Incentives and Support
单亲父母的就业激励措施:经济激励和支持变化对劳动力市场的影响
- DOI:
10.4337/9781849804998.00017 - 发表时间:
2010 - 期刊:
- 影响因子:6.1
- 作者:
J. Dalgety;R. Dorsett;Steven Johnston - 通讯作者:
Steven Johnston
American Dionysia
美国酒神节
- DOI:
10.1057/cpt.2008.40 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Steven Johnston - 通讯作者:
Steven Johnston
Journal of Digital Information Management a Web / Grid Portal Implementation of Biosimgrid: a Biomolecular Simulation Database
数字信息管理杂志 Biosimgrid 的 Web / 网格门户实施:生物分子模拟数据库
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Bing Wu;Matthew J. Dovey;Hong Muan;Ng;K. Tai;S. Murdock;H. Fangohr;Steven Johnston;Paul Jeffreys;Simon Cox;J. Essex;M. Sansom - 通讯作者:
M. Sansom
A hybrid Monte Carlo study of bond-stretching electron–phonon interactions and charge order in BaBiO3
对 BaBiO3 中键拉伸电子-声子相互作用和电荷有序的混合蒙特卡罗研究
- DOI:
10.1038/s41524-023-00998-6 - 发表时间:
2023-03-24 - 期刊:
- 影响因子:11.900
- 作者:
Benjamin Cohen-Stead;Kipton Barros;Richard Scalettar;Steven Johnston - 通讯作者:
Steven Johnston
High-resolution angle-resolved photoemission studies of quasiparticle dynamics in graphite
石墨中准粒子动力学的高分辨率角分辨光发射研究
- DOI:
10.1103/physrevb.79.125438 - 发表时间:
2009 - 期刊:
- 影响因子:3.7
- 作者:
C. S. Leem;C. Kim;S. Park;Min Kook Kim;H. Choi;Changyoung Kim;B. J. Kim;Steven Johnston;Steven Johnston;T. Devereaux;T. Ohta;A. Bostwick;E. Rotenberg - 通讯作者:
E. Rotenberg
Steven Johnston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Johnston', 18)}}的其他基金
CAREER: Advancing theory of Resonant Inelastic X-ray Scattering for Materials In- and Out-of-Equilibrium
职业:推进处于平衡态和非平衡态材料的共振非弹性 X 射线散射理论
- 批准号:
1842056 - 财政年份:2019
- 资助金额:
$ 35.13万 - 项目类别:
Continuing Grant
相似国自然基金
对质量形变SU(N)超对称Yang-Mills理论在R³×S¹流形上禁闭性质的非微扰研究
- 批准号:12305079
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非微扰光锥方法研究强子的力学性质
- 批准号:12375081
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
强耦合量子多体SYK模型的非微扰性质及Seiberg-Witten椭圆曲线方程与引力场扰动方程对应关系研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
介子分布振幅的非微扰研究
- 批准号:12265009
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
非微扰场论的理论研究及其对强关联系统和相变的应用
- 批准号:
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
重子-介子相互作用中的非微扰效应研究
- 批准号:12105006
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
核子部分子分布的非微扰研究
- 批准号:12005130
- 批准年份:2020
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
基于微扰QCD因子化的b重子非轻弱衰变的唯象研究
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
与矢量玻色子有关的暗物质模型及其非微扰效应和温度效应的研究
- 批准号:12005312
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
低能 pi N 和 NN 散射的非微扰研究
- 批准号:11975028
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
- 批准号:
RGPIN-2018-05502 - 财政年份:2022
- 资助金额:
$ 35.13万 - 项目类别:
Discovery Grants Program - Individual
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
- 批准号:
RGPIN-2018-05502 - 财政年份:2021
- 资助金额:
$ 35.13万 - 项目类别:
Discovery Grants Program - Individual
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
- 批准号:
RGPIN-2018-05502 - 财政年份:2020
- 资助金额:
$ 35.13万 - 项目类别:
Discovery Grants Program - Individual
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
- 批准号:
RGPIN-2018-05502 - 财政年份:2019
- 资助金额:
$ 35.13万 - 项目类别:
Discovery Grants Program - Individual
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
- 批准号:
RGPIN-2018-05502 - 财政年份:2018
- 资助金额:
$ 35.13万 - 项目类别:
Discovery Grants Program - Individual
Studies of non-perturbative effects in supersymmetric theories by the localization method
超对称理论非微扰效应的局域化研究
- 批准号:
19740120 - 财政年份:2007
- 资助金额:
$ 35.13万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Advanced Studies of Non-Perturbative Quantum Electrodynamics (QED) and Relation to the Standard Model
非微扰量子电动力学 (QED) 及其与标准模型关系的高级研究
- 批准号:
DP0558878 - 财政年份:2005
- 资助金额:
$ 35.13万 - 项目类别:
Discovery Projects
Non-Perturbative Numerical Studies of Lattice-Gas Models in Materials Science
材料科学中晶格气体模型的非微扰数值研究
- 批准号:
9634873 - 财政年份:1997
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant
Non-Perturbative Numerical Studies of Lattice-Gas Models in Materials Science
材料科学中晶格气体模型的非微扰数值研究
- 批准号:
9315969 - 财政年份:1994
- 资助金额:
$ 35.13万 - 项目类别:
Continuing Grant
U.S.-Australia Cooperative Research: Studies in Non-Perturbative QCD and Hadron Dynamics
美澳合作研究:非微扰QCD和强子动力学研究
- 批准号:
9215223 - 财政年份:1993
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant