Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
基本信息
- 批准号:1854113
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The 33rd Annual Workshop on Automorphic Forms and Related Topics (AFW) will take place March 6-10, 2019 at Duquesne University in Pittsburgh, PA. The AFW is an internationally recognized, well-respected conference on topics related to automorphic forms, which have played a key role in many recent breakthroughs in mathematics. Continuing a three-decade long tradition, the AFW will bring together a geographically diverse group of participants at a wide range of career stages, from graduate students to senior professors. Typically, about half of the attendees at the AFW are at early stages of their careers, and we make a particular effort to support women at all career stages. The AFW will continue to provide a supportive and encouraging environment for giving talks -- including the opportunity to give 3-minute "speed talks" on preliminary results -- exchanging ideas, and beginning new collaborations. In addition to the research talks, the AFW will continue the longstanding tradition of having two professional development panels on topics such as facilitating engagement and success in mathematics for underrepresented groups, preparing for the job market, and balancing professional responsibilities. To increase accessibility to a wider audience, the Workshop will begin with a one-day "bootcamp" to be held March 6th. Automorphic forms constitute a major area of study in number theory and related areas. One of the goals of the AFW is to promote new interactions and collaborations between researchers working in different areas concerning automorphic forms. Thus, the workshop will highlight a wide range of developments in areas including the analytic, algebraic, combinatorial, and p-adic theory of automorphic forms and related topics such as L-functions. Automorphic forms have played a key role in many breakthroughs in mathematics, including the proofs of Fermat's Last Theorem (by Andrew Wiles), Serre's Conjecture (by Chandrashekhar Khare, Mark Kisin, and Jean-Pierre Wintenberger), the Sato-Tate Conjecture (by Thomas Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor), Serre's Uniformity Conjecture (by Yuri Bilu and Pierre Parent),the Monstrous Moonshine Conjecture (for which Borcherds was awarded the Fields Medal), and the Fundamental Lemma (for which Ngo Bau Chau was awarded the Fields Medal). The topics covered in this year's workshop are likely to include Bianchi, elliptic, Jacobi, Hilbert, and Siegel modular forms, elliptic curves and abelian varieties, special values of L-functions, p-adic aspects of L-functions and automorphic forms, connections with representation theory, mock modular forms, quadratic forms, and additional related areas of research. The workshop website is http://automorphicformsworkshop.org/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第33届自守形式及相关主题年度研讨会(AFW)将于2019年3月6日至10日在宾夕法尼亚州匹兹堡的迪克讷大学举行。AFW是一个国际公认的,备受尊敬的关于自守形式相关主题的会议,自守形式在最近的许多数学突破中发挥了关键作用。延续三十年的悠久传统,AFW将汇集来自不同地理位置的参与者,从研究生到高级教授,他们处于广泛的职业阶段。通常情况下,大约一半的与会者在AFW是在他们的职业生涯的早期阶段,我们作出特别努力,以支持妇女在所有职业阶段。AFW将继续提供一个支持和鼓励的环境,以进行会谈-包括有机会就初步结果进行3分钟的“快速会谈”-交换意见,并开始新的合作。除了研究会谈,AFW将继续长期的传统,有两个专业发展小组的主题,如促进参与和数学的成功为代表性不足的群体,准备就业市场,并平衡专业责任。为了增加更广泛受众的参与度,研讨会将从3月6日举行的为期一天的“训练营”开始开始。 自守形式是数论及相关领域的一个主要研究领域。AFW的目标之一是促进在不同领域工作的研究人员之间关于自守形式的新的互动和合作。因此,研讨会将突出领域的广泛发展,包括分析,代数,组合和自守形式的p-adic理论和相关主题,如L-函数。自守形式在数学的许多突破中发挥了关键作用,包括费马大定理的证明(安德鲁·怀尔斯)塞尔猜想(作者:Ehrashekhar Khare,Mark Kisin和Jean-Pierre Win滕贝格),Sato-Tate猜想(作者:托马斯巴内特-兰姆、大卫杰拉蒂、迈克尔哈里斯和理查德泰勒),塞尔的一致性猜想(by Yuri Bilu and Pierre Parent),Monastery Moonshine Conjecture(Borcherds因此获得菲尔兹奖),and the Fundamental Lemma(Ngo Bau Chau因此获得菲尔兹奖).在今年的研讨会所涵盖的主题可能包括比安奇,椭圆,雅可比,希尔伯特和西格尔模形式,椭圆曲线和阿贝尔品种,特殊值的L-函数,p进方面的L-函数和自守形式,连接与表示理论,模拟模形式,二次形式,以及其他相关领域的研究。 研讨会网站是http://automorphicformsworkshop.org/.This奖反映了NSF的法定使命,并已被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Haensch其他文献
Classification of one-class spinor genera for quaternary quadratic forms
四元二次型的一类旋量属分类
- DOI:
10.4064/aa180309-19-2 - 发表时间:
2018 - 期刊:
- 影响因子:0.7
- 作者:
A. G. Earnest;Anna Haensch - 通讯作者:
Anna Haensch
29|2020 TippingSens: An R Shiny Application to Facilitate Sensitivity Analysis for Causal Inference Under Confounding
29|2020 TippingSens:一种 R Shiny 应用程序,可促进混杂条件下因果推理的敏感性分析
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Anna Haensch;Jörg Drechsler;Sarah Bernhard - 通讯作者:
Sarah Bernhard
Seeing ChatGPT Through Students’ Eyes: An Analysis of TikTok Data
从学生的角度看ChatGPT:TikTok数据分析
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Anna Haensch;Sarah Ball;Markus Herklotz;F. Kreuter - 通讯作者:
F. Kreuter
A geospatial bounded confidence model including mega-influencers with an application to Covid-19 vaccine hesitancy
包含大型影响者的地理空间有界置信模型,应用于 Covid-19 疫苗犹豫问题
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Anna Haensch;Natasa Dragovic;Christoph Borgers;B. Boghosian - 通讯作者:
B. Boghosian
Covid-19 vaccine hesitancy and mega-influencers
Covid-19 疫苗犹豫和大影响者
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Anna Haensch;Natasa Dragovic;C. Börgers;B. Boghosian - 通讯作者:
B. Boghosian
Anna Haensch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
2005654 - 财政年份:2020
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1802058 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1701585 - 财政年份:2017
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1601959 - 财政年份:2016
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Building Bridges: 3rd EU/US Summer School and automorphic forms workshop
搭建桥梁:第三届欧盟/美国暑期学校和自守形式研讨会
- 批准号:
1630217 - 财政年份:2016
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Building Bridges: 2nd EU/US Summer School & Workshop on Automorphic Forms and Related Topics, June 30-July 1, 2014
搭建桥梁:第二届欧盟/美国暑期学校
- 批准号:
1407077 - 财政年份:2014
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Automorphic Forms Workshop 2014, May 12-16 2014
自守形式研讨会 2014,2014 年 5 月 12-16 日
- 批准号:
1404066 - 财政年份:2014
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant