Conference: Workshop on Automorphic Forms and Related Topics

会议:自守形式及相关主题研讨会

基本信息

  • 批准号:
    2401444
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

The 36th Annual Workshop on Automorphic Forms and Related Topics (AFW) will take place May 20-24, 2024, at Oklahoma State University in Stillwater, OK. The AFW is an internationally recognized, well-respected conference on topics related to automorphic forms, which have played a key role in many recent breakthroughs in mathematics. The AFW will bring together a geographically diverse group of participants at a wide range of career stages, from graduate students to senior professors. Typically, about half of the attendees at the AFW are at early stages of their careers, and about one quarter to one third of participants are women. The AFW will continue to provide a supportive and encouraging environment for giving talks, exchanging ideas, and beginning new collaborations. This is the first time the AFW will meet in Oklahoma where many experts on automorphic forms and closely related topics are nearby. Thus, in addition to attracting speakers who participate annually, the workshop is likely to draw a mix of new attendees who will contribute new perspectives and energy and benefit from the workshop. The workshop is known for its inclusive, encouraging atmosphere, particularly to early career researchers and to those from underrepresented groups in the number theory community. The workshop has traditionally been a fruitful place for these researchers to connect with potential collaborators and mentors at other institutions, working on related topics. To help achieve this goal, the 2024 AFW will feature five expository talks on various fundamental topics in the theory of automorphic forms, aimed at the graduate student level. There will also be two panel discussions focused on mathematical career questions. Automorphic forms play a central role in number theory, being integral to the proofs of many groundbreaking theorems, including Fermat's Last Theorem (by Andrew Wiles), the Sato-Tate Conjecture (by Thomas Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor), Serre's Conjecture (by Chandrashekhar Khare, Mark Kisin, and Jean-Pierre Wintenberger), the Sato-Tate Conjecture (by Thomas Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor), Serre's Uniformity Conjecture (by Yuri Bilu and Pierre Parent), and the Fundamental Lemma (for which Ngo Bau Chau was awarded the Fields Medal). Automorphic forms are the subject of many important ongoing conjectures, among them the Langlands program, connections to random matrix theory, and the generalized Riemann hypothesis. They also appear in many areas of mathematics outside number theory, most notably in mathematical physics. The topics covered in this year's workshop are likely to include elliptic, Siegel, Hilbert, and Bianchi modular forms, elliptic curves and abelian varieties, special values of L-functions, p-adic aspects of L-functions and automorphic forms, connections with representation theory, mock modular forms, quadratic forms, connections with mathematical physics, monstrous moonshine, and additional related areas of research. Additional information can be found on the conference website: http://automorphicformsworkshop.org/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第36届汽车形式和相关主题的年度研讨会(AFW)将于2024年5月20日至24日在俄克拉荷马州斯蒂尔沃特的俄克拉荷马州立大学举行。 AFW是一次国际认可的,备受尊重的与自动形式相关的主题会议,在最近的许多数学突破中,它们在许多近期突破中发挥了关键作用。 AFW将在从研究生到高级教授的各个职业阶段中汇集一群地理上不同的参与者。通常,AFW约有一半的与会者处于职业生涯的早期阶段,大约四分之一到三分之一的参与者是女性。 AFW将继续提供一个支持和令人鼓舞的环境,以进行谈判,交换想法并开始新的合作。这是AFW首次在俄克拉荷马州见面,许多关于自动形态形式的专家和密切相关的主题在附近。因此,除了吸引每年参加的演讲者外,研讨会还可能吸引新的与会者的组合,这些新与会者将贡献新的观点和精力,并从研讨会中受益。 该研讨会以其包容性,令人鼓舞的氛围而闻名,特别是对早期职业研究人员以及数字理论社区中代表性不足的群体的人。传统上,该研讨会是这些研究人员与其他机构的潜在合作者和导师建立联系的富有成果的地方,从事相关主题。为了帮助实现这一目标,2024年AFW将在针对研究生层面的自动形式理论中发表五次关于各种基本主题的说明性谈判。还将在数学职业问题上进行两个小组讨论。自动形式在数字理论中起着核心作用,是许多开创性定理的证据不可或缺的组成部分,包括费马特的最后一个定理(由安德鲁·威尔斯(Andrew Wiles)),萨托·威尔斯(Andrew Wiles),萨托特·塔特(Andrew Wiles)(由托马斯·巴内特·勒姆姆(Thomas Barnet-Lamb),托马斯·巴尼特·勒姆(Thomas Barnet-Lamb),戴维·杰拉格蒂(David Geraghty),迈克尔·泰勒(David Geraghty),迈克尔·泰勒(Michael Harris)和塞尔·塞雷(Serre Harris)的乔恩·帕斯特(Jean-Jean-pier)(由Chandrashekharey and Chandrasheekhare) Wintenberger),Sato-Tate的猜想(由Thomas Barnet-Lamb,David Geraghty,Michael Harris和Richard Taylor),Serre的统一性猜想(由Yuri Bilu和Pierre Parent),以及基本的柠檬(Yuri Bilu and Pierre Parent)(由Nogo Bau Chau授予了Fields fields Medal)。 自动形式是许多持续猜想的主题,其中包括兰兰兹计划,与随机矩阵理论的联系以及广义的Riemann假设。它们也出现在数学理论之外的许多数学领域,最著名的是数学物理学。 The topics covered in this year's workshop are likely to include elliptic, Siegel, Hilbert, and Bianchi modular forms, elliptic curves and abelian varieties, special values of L-functions, p-adic aspects of L-functions and automorphic forms, connections with representation theory, mock modular forms, quadratic forms, connections with mathematical physics, monstrous moonshine, and additional related areas of 研究。 其他信息可以在会议网站上找到:http://automorphicformsworkshop.org/.this奖反映了NSF的法定任务,并且使用基金会的知识分子和更广泛的影响评估标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melissa Emory其他文献

Sato-Tate Distributions of $y^2=x^p-1$ and $y^2=x^{2p}-1$
$y^2=x^p-1$ 和 $y^2=x^{2p}-1$ 的佐藤泰特分布
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Melissa Emory;Heidi Goodson
  • 通讯作者:
    Heidi Goodson
Towards the Sato–Tate groups of trinomial hyperelliptic curves
走向三项式超椭圆曲线的 Sato–Tate 群
Sato-Tate distributions of y2 = x − 1 and y2 = x2 − 1
y2=x−1 和 y2=x2−1 的 Sato-Tate 分布
  • DOI:
    10.1016/j.jalgebra.2022.01.002
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Melissa Emory;Heidi Goodson
  • 通讯作者:
    Heidi Goodson
On the global Gan–Gross–Prasad conjecture for general spin groups
关于一般自旋群的全局 Gan-Gross-Prasad 猜想
  • DOI:
    10.2140/pjm.2020.306.115
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Melissa Emory
  • 通讯作者:
    Melissa Emory

Melissa Emory的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melissa Emory', 18)}}的其他基金

Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347097
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    2002085
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Fellowship Award

相似国自然基金

定制化生产下车间资源的数字孪生管控方法
  • 批准号:
    62303142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时变环境下混合流水车间调度优化理论与方法研究
  • 批准号:
    12371310
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
考虑装车效率的分布式柔性流水车间调度研究
  • 批准号:
    52305550
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
孪生数据驱动的船舶建造车间多工位协同优化与动态决策方法
  • 批准号:
    52371324
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于复杂工艺柔性的车间调度集成优化问题精确建模及其高效求解
  • 批准号:
    52305534
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
  • 批准号:
    2005654
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
  • 批准号:
    1854113
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
  • 批准号:
    1802058
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
  • 批准号:
    1701585
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
  • 批准号:
    1601959
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了