Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
基本信息
- 批准号:2401444
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The 36th Annual Workshop on Automorphic Forms and Related Topics (AFW) will take place May 20-24, 2024, at Oklahoma State University in Stillwater, OK. The AFW is an internationally recognized, well-respected conference on topics related to automorphic forms, which have played a key role in many recent breakthroughs in mathematics. The AFW will bring together a geographically diverse group of participants at a wide range of career stages, from graduate students to senior professors. Typically, about half of the attendees at the AFW are at early stages of their careers, and about one quarter to one third of participants are women. The AFW will continue to provide a supportive and encouraging environment for giving talks, exchanging ideas, and beginning new collaborations. This is the first time the AFW will meet in Oklahoma where many experts on automorphic forms and closely related topics are nearby. Thus, in addition to attracting speakers who participate annually, the workshop is likely to draw a mix of new attendees who will contribute new perspectives and energy and benefit from the workshop. The workshop is known for its inclusive, encouraging atmosphere, particularly to early career researchers and to those from underrepresented groups in the number theory community. The workshop has traditionally been a fruitful place for these researchers to connect with potential collaborators and mentors at other institutions, working on related topics. To help achieve this goal, the 2024 AFW will feature five expository talks on various fundamental topics in the theory of automorphic forms, aimed at the graduate student level. There will also be two panel discussions focused on mathematical career questions. Automorphic forms play a central role in number theory, being integral to the proofs of many groundbreaking theorems, including Fermat's Last Theorem (by Andrew Wiles), the Sato-Tate Conjecture (by Thomas Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor), Serre's Conjecture (by Chandrashekhar Khare, Mark Kisin, and Jean-Pierre Wintenberger), the Sato-Tate Conjecture (by Thomas Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor), Serre's Uniformity Conjecture (by Yuri Bilu and Pierre Parent), and the Fundamental Lemma (for which Ngo Bau Chau was awarded the Fields Medal). Automorphic forms are the subject of many important ongoing conjectures, among them the Langlands program, connections to random matrix theory, and the generalized Riemann hypothesis. They also appear in many areas of mathematics outside number theory, most notably in mathematical physics. The topics covered in this year's workshop are likely to include elliptic, Siegel, Hilbert, and Bianchi modular forms, elliptic curves and abelian varieties, special values of L-functions, p-adic aspects of L-functions and automorphic forms, connections with representation theory, mock modular forms, quadratic forms, connections with mathematical physics, monstrous moonshine, and additional related areas of research. Additional information can be found on the conference website: http://automorphicformsworkshop.org/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第36届自守形式及相关主题年度研讨会(AFW)将于2024年5月20日至24日在俄克拉荷马州州立大学斯蒂尔沃特举行。 AFW是一个国际公认的,备受尊敬的关于自守形式相关主题的会议,自守形式在最近的许多数学突破中发挥了关键作用。AFW将汇集来自不同地理位置的参与者,从研究生到高级教授,他们处于广泛的职业阶段。通常情况下,大约一半的与会者在AFW是在他们的职业生涯的早期阶段,约四分之一到三分之一的参与者是妇女。AFW将继续提供一个支持性和鼓励性的环境,以进行演讲,交流想法,并开始新的合作。这是AFW第一次在俄克拉荷马州举行会议,那里有许多关于自守形式和密切相关主题的专家。因此,除了吸引每年参加的发言者外,讲习班还可能吸引各种新的与会者,他们将贡献新的观点和能量,并从讲习班中受益。 该研讨会以其包容性,令人鼓舞的气氛而闻名,特别是对早期职业研究人员和那些来自数论界代表性不足的群体。该研讨会传统上是这些研究人员与其他机构的潜在合作者和导师联系的富有成效的地方,致力于相关主题。为了帮助实现这一目标,2024年AFW将在自守形式理论的各种基本主题上进行五次简短的演讲,针对研究生水平。还将有两个小组讨论集中在数学职业问题。自守形式在数论中起着核心作用,是许多开创性定理(包括费马大定理)证明的组成部分(作者:Andrew Wiles)Sato-Tate Conjecture(作者:托马斯巴内特-兰姆、大卫杰拉蒂、迈克尔哈里斯和理查德泰勒),塞尔猜想(作者:Ehrashekhar Khare,Mark Kisin和Jean-Pierre Win滕贝格),Sato-Tate猜想(作者:托马斯巴内特-兰姆,大卫杰拉蒂,迈克尔哈里斯和理查德泰勒),塞尔的一致性猜想(作者:尤里比卢和皮埃尔父母),和基本引理(Ngo Bau Chau因其获得菲尔兹奖)。 自守形式是许多正在进行的重要理论的主题,其中包括朗兰兹纲领、与随机矩阵理论的联系以及广义黎曼假设。它们也出现在数论之外的许多数学领域,最明显的是数学物理。在今年的研讨会所涵盖的主题可能包括椭圆,西格尔,希尔伯特,和比安奇模形式,椭圆曲线和阿贝尔品种,特殊值的L-函数,p进方面的L-函数和自守形式,连接与表示论,模拟模形式,二次形式,连接与数学物理,怪物月光,和其他相关领域的研究。 更多信息可以在会议网站上找到:http://automorphicformsworkshop.org/.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa Emory其他文献
Sato-Tate Distributions of $y^2=x^p-1$ and $y^2=x^{2p}-1$
$y^2=x^p-1$ 和 $y^2=x^{2p}-1$ 的佐藤泰特分布
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Melissa Emory;Heidi Goodson - 通讯作者:
Heidi Goodson
Towards the Sato–Tate groups of trinomial hyperelliptic curves
走向三项式超椭圆曲线的 Sato–Tate 群
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0.7
- 作者:
Melissa Emory;Heidi Goodson;A. Peyrot - 通讯作者:
A. Peyrot
Sato-Tate distributions of y2 = x − 1 and y2 = x2 − 1
y2=x−1 和 y2=x2−1 的 Sato-Tate 分布
- DOI:
10.1016/j.jalgebra.2022.01.002 - 发表时间:
2022 - 期刊:
- 影响因子:0.9
- 作者:
Melissa Emory;Heidi Goodson - 通讯作者:
Heidi Goodson
On the global Gan–Gross–Prasad conjecture for general spin groups
关于一般自旋群的全局 Gan-Gross-Prasad 猜想
- DOI:
10.2140/pjm.2020.306.115 - 发表时间:
2019 - 期刊:
- 影响因子:0.6
- 作者:
Melissa Emory - 通讯作者:
Melissa Emory
Sato-Tate distributions of emy/emsup2/sup = emx/emsupemp/em/sup − 1 and emy/emsup2/sup = emx/emsup2emp/em/sup − 1
emy/emsup2/sup = emx/emsupemp/em/sup − 1 和 emy/emsup2/sup = emx/emsup2emp/em/sup − 1 的佐藤-塔特分布
- DOI:
10.1016/j.jalgebra.2022.01.002 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:0.800
- 作者:
Melissa Emory;Heidi Goodson - 通讯作者:
Heidi Goodson
Melissa Emory的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melissa Emory', 18)}}的其他基金
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347097 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
相似海外基金
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
2005654 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1854113 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1802058 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1701585 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1601959 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Building Bridges: 3rd EU/US Summer School and automorphic forms workshop
搭建桥梁:第三届欧盟/美国暑期学校和自守形式研讨会
- 批准号:
1630217 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Building Bridges: 2nd EU/US Summer School & Workshop on Automorphic Forms and Related Topics, June 30-July 1, 2014
搭建桥梁:第二届欧盟/美国暑期学校
- 批准号:
1407077 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Automorphic Forms Workshop 2014, May 12-16 2014
自守形式研讨会 2014,2014 年 5 月 12-16 日
- 批准号:
1404066 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant