CAREER: Cold plasma intensified perovskite membrane technology for CO2 utilization
职业:用于二氧化碳利用的冷等离子体强化钙钛矿膜技术
基本信息
- 批准号:2403991
- 负责人:
- 金额:$ 53.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2028-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Platform chemicals are the essential building blocks used by the chemical processing industries to produce high-value chemical products. Conversion of greenhouse gases (GHG) such as CO2 and CH4 to platform precursors could significantly reduce atmospheric GHG while producing oxygenated chemical feedstocks and fuels. Current production of oxygenated chemicals from GHG requires large-scale, complex, high-pressure reaction processes, and manufacturing operations with significant carbon footprints. Therefore, there is a critical need to explore more sustainable routes to dry methane reforming (DMR), the reaction between CO2 and CH4 to produce highly reactive hydrogen and carbon monoxide. Non-thermal (low temperature) plasma-catalysis processes have recently emerged as an alternative to current DMR. This electrically driven approach will be investigated for one-step production of oxygenated species from GHG under mild conditions, making use of renewable and decentralized electrical power sources, potentially expanding US employment and regional business opportunities. This research program will study the fundamental chemical and physical mechanisms at work in plasma-enhanced conversion of GHG with the goal of reaching chemical processing conditions that are energy flexible and efficient. Over the next five years the research team will focus on understanding plasma chemistry reaction mechanisms and the systematic design of plasma-catalytic membrane reactor concepts capable of on-demand use of renewable electricity. Education and outreach activities include developing an undergraduate/graduate level plasma catalysis class and continuing a STEM Camp for Girl Scouts.In this project, atmospheric low-temperature plasma catalysis will be investigated as an alternative to conventional thermally activated reaction routes to oxygenated fuels and chemical products based on high pressure Dry Methane Reforming (DMR). The key feature of plasma-catalysis is the synergy between the plasma and the catalyst, where the non-equilibrium plasma creates radicals and charged plasma-phase species which react at the catalyst surface to form the chemical product species; however, little is known in terms of fundamental understanding of plasma/catalyst interactions and surface processes. This research will address this knowledge gap by focusing on perovskite catalysts, selected for their unique dielectric and polarization properties. The interaction between the charged species in the plasma and perovskite catalysts may lead to drastic changes in the perovskite structural and surface electronic properties, potentially leading to unprecedented oxygenated species production rates. The in situ diagnostic capabilities of the research team will make possible the systematic synthesis of plasma-enhanced perovskite catalysts designed to operate at low temperature (200 deg C) and atmospheric pressure, opening the door to decentralized and modular production of oxygenated fuels and chemicals from CO2 and CH4. To further improve process performance, the catalyst will be fabricated as a unique macroporous perovskite membrane with the objective of improving selectivity to methanol. The proposed membrane reactor offers the advantages of significantly reduced pressure drop typically found in packed bed reactors enhancing process throughput. Specific research plans focus on: (1) Designing nanocrystalline perovskite membranes for the synthesis of oxygenated chemicals and fuels; (2) Fine tuning the catalytic active sites of selected perovskites for the synthesis of methanol; (3) Evaluating the catalytic performance of perovskite membranes under low-temperature plasma in the conversion of CO2/CH4 mixtures to methanol; (4) Elucidation and understanding of the synergism in plasma-catalyst systems for the synthesis of oxygenated chemical species.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
平台化学品是化学加工业用来生产高价值化学产品的重要组成部分。将二氧化碳和甲烷等温室气体 (GHG) 转化为平台前体可以显着减少大气中的温室气体,同时生产含氧化学原料和燃料。目前利用温室气体生产含氧化学品需要大规模、复杂的高压反应过程以及具有大量碳足迹的制造操作。因此,迫切需要探索更可持续的干甲烷重整(DMR)路线,即二氧化碳和甲烷之间的反应,产生高活性氢气和一氧化碳。非热(低温)等离子体催化工艺最近已成为当前 DMR 的替代方案。将研究这种电力驱动方法,以在温和条件下利用温室气体一步生产含氧物质,利用可再生和分散的电力来源,从而有可能扩大美国的就业和区域商业机会。该研究计划将研究等离子体增强温室气体转化的基本化学和物理机制,目标是达到能源灵活且高效的化学加工条件。在接下来的五年中,研究团队将重点了解等离子体化学反应机制以及能够按需使用可再生电力的等离子体催化膜反应器概念的系统设计。教育和外展活动包括开设本科/研究生水平的等离子体催化课程,并继续为女童子军举办 STEM 夏令营。在该项目中,将研究大气低温等离子体催化,作为基于高压干甲烷重整 (DMR) 的含氧燃料和化学产品的传统热激活反应路线的替代方案。等离子体催化的关键特征是等离子体和催化剂之间的协同作用,其中非平衡等离子体产生自由基和带电等离子体相物质,它们在催化剂表面反应形成化学产物物质;然而,人们对等离子体/催化剂相互作用和表面过程的基本了解知之甚少。这项研究将通过关注钙钛矿催化剂来解决这一知识差距,钙钛矿催化剂因其独特的介电和极化特性而被选择。等离子体中带电物质与钙钛矿催化剂之间的相互作用可能会导致钙钛矿结构和表面电子特性发生巨大变化,从而可能导致前所未有的含氧物质生产率。研究团队的原位诊断能力将使等离子体增强钙钛矿催化剂的系统合成成为可能,该催化剂设计用于在低温(200摄氏度)和大气压下运行,为分散和模块化生产二氧化碳和甲烷含氧燃料和化学品打开了大门。为了进一步提高工艺性能,催化剂将被制成独特的大孔钙钛矿膜,目的是提高对甲醇的选择性。所提出的膜反应器具有显着降低填充床反应器中常见的压降的优点,从而提高了工艺产量。具体研究计划集中在:(1)设计用于合成含氧化学品和燃料的纳米晶钙钛矿膜; (2) 微调所选钙钛矿合成甲醇的催化活性位点; (3)评价低温等离子体下钙钛矿膜在CO2/CH4混合物转化为甲醇中的催化性能; (4) 阐明和理解等离子体催化剂系统合成含氧化学物质的协同作用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Carreon其他文献
Maria Carreon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Carreon', 18)}}的其他基金
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
- 批准号:
2403970 - 财政年份:2023
- 资助金额:
$ 53.87万 - 项目类别:
Standard Grant
CAREER: Cold plasma intensified perovskite membrane technology for CO2 utilization
职业:用于二氧化碳利用的冷等离子体强化钙钛矿膜技术
- 批准号:
2235247 - 财政年份:2023
- 资助金额:
$ 53.87万 - 项目类别:
Continuing Grant
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
- 批准号:
2203166 - 财政年份:2021
- 资助金额:
$ 53.87万 - 项目类别:
Standard Grant
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
- 批准号:
1921438 - 财政年份:2019
- 资助金额:
$ 53.87万 - 项目类别:
Standard Grant
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
- 批准号:
1947303 - 财政年份:2019
- 资助金额:
$ 53.87万 - 项目类别:
Standard Grant
相似国自然基金
水稻低温感受器COLD1-RGA1的三维结构解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水稻低温感受器COLD1平衡耐寒性与生长发育的机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
加工番茄COLD1与GPA1互作参与低温胁迫应答分子机制的研究
- 批准号:32160071
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
膜蛋白COLD6参与水稻低温感知的分子机理
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
COLD-PR-PCR结合两核苷酸合成测序(SDBA)研究低丰度基因突变
- 批准号:61801071
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
COLD1互作蛋白对水稻耐冷性的调节
- 批准号:31770286
- 批准年份:2017
- 资助金额:58.0 万元
- 项目类别:面上项目
COLD-PCR/探针熔解曲线技术定量检测CHB患者HBV RT区准种及其意义
- 批准号:81672101
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
COLD-PCR/HRM技术用于早期快速诊断耐药结核病的研究
- 批准号:81301509
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
拟南芥COLD1 基因介导的氧化信号传递及转录调控机制分析
- 批准号:31301165
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A minimally Invasive surgical platform aGainst paNcreatIc and biliary Tract cancErs using cold atmospheric PLASMA
使用冷大气等离子体治疗胰腺癌和胆道癌的微创手术平台
- 批准号:
10106237 - 财政年份:2024
- 资助金额:
$ 53.87万 - 项目类别:
EU-Funded
Reducing antimicrobial resistant bacteria with the use of cold atmospheric plasma: Mechanism of action and influence on mutation and horizontal gene t
使用冷大气等离子体减少抗菌药物耐药性细菌:作用机制以及对突变和水平基因t的影响
- 批准号:
2888329 - 财政年份:2023
- 资助金额:
$ 53.87万 - 项目类别:
Studentship
Effects and mechanisms of cold-induced stress on the development of Chlamydia muridarum genital infection in a mouse model
寒冷应激对鼠衣原体生殖道感染小鼠模型的影响及机制
- 批准号:
10730819 - 财政年份:2023
- 资助金额:
$ 53.87万 - 项目类别:
CAREER: Cold plasma intensified perovskite membrane technology for CO2 utilization
职业:用于二氧化碳利用的冷等离子体强化钙钛矿膜技术
- 批准号:
2235247 - 财政年份:2023
- 资助金额:
$ 53.87万 - 项目类别:
Continuing Grant
NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust
NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排
- 批准号:
2234270 - 财政年份:2023
- 资助金额:
$ 53.87万 - 项目类别:
Standard Grant
PlasmaFresh: Cold plasma for global food security
PlasmaFresh:冷等离子体促进全球粮食安全
- 批准号:
10078865 - 财政年份:2023
- 资助金额:
$ 53.87万 - 项目类别:
Collaborative R&D
Engineered cold plasma for CO2 reduction
用于减少二氧化碳排放的工程冷等离子体
- 批准号:
10068121 - 财政年份:2022
- 资助金额:
$ 53.87万 - 项目类别:
EU-Funded
A perfect marriage of 3D printing and cold plasma for bone tissue engineering application
3D打印与冷等离子体在骨组织工程应用中的完美结合
- 批准号:
572416-2022 - 财政年份:2022
- 资助金额:
$ 53.87万 - 项目类别:
University Undergraduate Student Research Awards
Exploration of high voltage atmospheric cold plasma as a practical tool for reducing food spoilage
探索高压常压冷等离子体作为减少食品腐败的实用工具
- 批准号:
RGPIN-2020-05618 - 财政年份:2022
- 资助金额:
$ 53.87万 - 项目类别:
Discovery Grants Program - Individual
Engineering injectable cold atmospheric plasma-preserved hydrogel to treat breast cancer
工程可注射冷常压等离子体保存水凝胶治疗乳腺癌
- 批准号:
463187 - 财政年份:2022
- 资助金额:
$ 53.87万 - 项目类别:
Operating Grants














{{item.name}}会员




