Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities

弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成

基本信息

  • 批准号:
    RGPIN-2014-05050
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

My research lies in an area of higher dimensional geometry that is closely linked to theoretical physics. For about one hundred years, physicists have been searching for a theory that mathematically unifies gravity with quantum mechanics. An extremely promising candidate is M-theory, which describes the universe in terms of a 7-dimensional geometric shape (called a manifold) that is curved in a very special way. These shapes are called G2 manifolds. However, for the physical theory to be consistent with reality one requires these G2 manifolds to have certain corners (called singularities) which look like cones. The subset of G2 manifolds that have cone-like points are called G2 conifolds. The problem is that although we know thousands of examples of "smooth" G2 manifolds (those without cone-like points), there is still no mathematical proof that proper G2 conifolds actually exist. They definitely are expected to exist, and in abundance, both from physical arguments and from rigorous mathematical work of myself and Lotay. The principal short-term goal of my proposed research project is to construct the first ever examples of G2 conifolds, thereby providing a rigorous mathematical proof of their existence. This is an extremely important problem to solve, because it would give conclusive mathematical justification for the feasibility of M-theory as a model of our physical universe. The method I propose to use is a generalization of a method of constructing smooth G2 manifolds of myself and Joyce, which involves glueing onto the shape a particular family of spaces that are solutions to Einstein's equations of general relativity. Another important short-term goal of my proposed research project is to understand the set of all possible G2 manifolds (called the "moduli space"), which is itself a geometric shape of very high dimension. Studying the way in which a smoothly deforming G2 manifold can develop cone-like points involves considering curves on the moduli space that reach the boundary. I propose to investigate this question by analyzing the curvature of the moduli space itself. Establishing upper bounds on this curvature gives quantitative information about the formation of cone-like singularities and imposes restrictions on the associated physics. The long-term mathematical goal is to understand the structure of G2 manifolds as well as we understand Calabi-Yau manifolds, which are 6-dimensional shapes with similar properties that are much better understood. Both of these types of manifolds are candidates for grand unified theories in physics, particularly superstring theory and M-theory. Mathematically, G2 manifolds are very interesting objects because they share many common properties with Calabi-Yau manifolds, such as special types of submanifolds (smaller shapes sitting inside them) and connections (rules for measuring the rates of change on such shapes). In spite of this, there is sharp contrast, however, because for technical reasons G2 manifolds cannot be studied using the same tools that have been successful for Calabi-Yau manifolds, namely methods of classical algebraic geometry. This is because, rather than being locally modelled by the complex numbers like the Calabi-Yau manifolds are, they are locally modelled by an exceptional number system that exists only in 7 real dimensions. Since tools of algebraic geometry are not available, we need to study such manifolds instead using techniques from analysis, namely nonlinear partial differential equations. It is precisely for this reason that the mathematical analysis of G2 manifolds and G2 conifolds is so technically difficult, and why there are so many fewer mathematicians working in this modern area as opposed to the classical area of Calabi-Yau manifolds.
我的研究领域是与理论物理密切相关的高维几何。大约一百年来,物理学家一直在寻找一种理论,在数学上统一引力和量子力学。一个非常有前途的候选者是m理论,它用一个以非常特殊的方式弯曲的7维几何形状(称为流形)来描述宇宙。这些形状被称为G2流形。然而,为了使物理理论与现实相一致,人们要求这些G2流形具有某些看起来像锥体的角(称为奇点)。具有圆锥形点的G2流形的子集称为G2 conconfold。问题是,尽管我们知道成千上万的“光滑”G2流形(没有锥形点的G2流形)的例子,但仍然没有数学证据证明合适的G2流形确实存在。从物理论证和我和洛泰严格的数学研究来看,它们肯定会存在,而且会大量存在。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karigiannis, Spiro其他文献

Karigiannis, Spiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karigiannis, Spiro', 18)}}的其他基金

Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
  • 批准号:
    RGPIN-2019-03933
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
  • 批准号:
    RGPIN-2019-03933
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
  • 批准号:
    RGPIN-2019-03933
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
  • 批准号:
    RGPIN-2019-03933
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
  • 批准号:
    RGPIN-2014-05050
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
  • 批准号:
    RGPIN-2014-05050
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
  • 批准号:
    RGPIN-2014-05050
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
  • 批准号:
    RGPIN-2014-05050
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Differential geomtery of manifold with special holonomy and their calibrated submanifolds
特殊完整流形的微分几何及其标定子流形
  • 批准号:
    371990-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Differential geomtery of manifold with special holonomy and their calibrated submanifolds
特殊完整流形的微分几何及其标定子流形
  • 批准号:
    371990-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对RS和AG码新型软判决代数译码的研究
  • 批准号:
    61671486
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
  • 批准号:
    11071206
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
  • 批准号:
    10771181
  • 批准年份:
    2007
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
  • 批准号:
    2338492
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Deformation spaces of geometric structures
几何结构的变形空间
  • 批准号:
    2304636
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Geometric structures and twisted supersymmetry
几何结构和扭曲超对称
  • 批准号:
    EP/X014959/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
  • 批准号:
    23K17661
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Geometric structures on surfaces and harmonic maps
表面上的几何结构和调和图
  • 批准号:
    23KJ1468
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
  • 批准号:
    2212148
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Geometric structures in low dimensions
低维几何结构
  • 批准号:
    RGPIN-2017-05403
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Reconsideration of the information geometric structures from the view point of deformed thermostatistics
从变形恒温学角度重新思考信息几何结构
  • 批准号:
    22K03431
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric hydrodynamics and Hamiltonian structures
几何流体动力学和哈密顿结构
  • 批准号:
    RGPIN-2019-05209
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了