Algebraic Structures in Topology Conference, San Juan, Puerto Rico
拓扑中的代数结构会议,波多黎各圣胡安
基本信息
- 批准号:2200130
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides support for the conference “Algebraic structures in topology” in San Juan, Puerto Rico, to be held on May 30th-June 3rd, 2022. The conference will focus on recent developments in algebraic topology and its applications to geometric topology, mathematical physics, and algebraic geometry. This event aims to bring together mathematicians from diverse subfields in algebraic topology, who use similar techniques to achieve different goals and foster new ideas and perspectives. The conference will feature plenary talks, mini-courses, contributed talks, and time for informal interactions. Another major goal of the conference is outreach to mathematicians from unrepresented racial and ethnic groups who may feel isolated from the larger mathematical community. The guiding theme of the conference is the use of algebraic and categorical techniques to better understand the homotopy theory of spaces, the algebraic topology of manifolds, and algebro-geometric objects. The following are among the topics that will be highlighted at the conference: the theory of operads, equivariant homotopy theory, higher category theory and derived algebra, Hochschild homology theory of structured algebras, and algebraic K-theory. More information is available at the conference website https://sites.google.com/view/algebraicstructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为将于2022年5月30日至6月3日在波多黎各圣胡安举行的“拓扑学中的代数结构”会议提供支持。会议将集中讨论代数拓扑学的最新发展及其在几何拓扑学、数学物理学和代数几何学中的应用。本次活动旨在汇集来自代数拓扑学不同子领域的数学家,他们使用类似的技术来实现不同的目标,并促进新的想法和观点。会议将包括全体会议,小型课程,贡献会谈和非正式互动的时间。会议的另一个主要目标是与那些可能感到与更大的数学界隔绝的没有代表性的种族和民族的数学家进行交流。会议的指导主题是使用代数和分类技术,以更好地理解空间的同伦理论,流形的代数拓扑和代数几何对象。以下是其中的主题,将突出在会议上:理论的运算,等变同伦理论,更高的类别理论和派生代数,Hochschild同源理论的结构代数,代数K理论。更多信息可在会议网站www.example.com上获得https://sites.google.com/view/algebraicstructures.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manuel Rivera其他文献
The role of dietary arachidonic acid and docosahexaenoic acid in preventing the phenotype observed with highly unsaturated fatty acid deficiency
膳食花生四烯酸和二十二碳六烯酸在预防高度不饱和脂肪酸缺乏的表型中的作用
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Manuel Rivera - 通讯作者:
Manuel Rivera
Perceptions of service attributes in a religious theme site: an importance–satisfaction analysis
对宗教主题网站服务属性的看法:重要性-满意度分析
- DOI:
10.1080/17438730902822939 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Manuel Rivera;Amir Shani;D. Severt - 通讯作者:
D. Severt
Human agency shaping tourism competitiveness and quality of life in developing economies
- DOI:
10.1016/j.tmp.2017.03.002 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Marketa Kubickova;Robertico Croes;Manuel Rivera - 通讯作者:
Manuel Rivera
PERCUTANEOUS EPICARDIAL MAPPING AND ABLATION OF VENTRICULAR TACHYCARDIA: A SYSTEMATIC REVIEW OF SAFETY OUTCOMES
- DOI:
10.1016/s0735-1097(17)33735-x - 发表时间:
2017-03-21 - 期刊:
- 影响因子:
- 作者:
Rhanderson Cardoso;Manuel Rivera;Harold Rivner;Rodrigo Mendirichaga;Andre D'Avila - 通讯作者:
Andre D'Avila
THYROID DYSFUNCTION AS A PREDICTOR OF ADVERSE CARDIOVASCULAR OUTCOMES IN HEART FAILURE: A META-ANALYSIS
- DOI:
10.1016/s0735-1097(19)31488-3 - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Amanda Fernandes;Gilson Fernandes;Leonardo Knijnik;Manuel Rivera;Rosario Colombo;Amit Badiye;Sandra Chaparro - 通讯作者:
Sandra Chaparro
Manuel Rivera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manuel Rivera', 18)}}的其他基金
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Conference: Algebraic Structures in Topology 2024
会议:拓扑中的代数结构 2024
- 批准号:
2348092 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Algebraic Structures in Topology and Geometry
拓扑和几何中的代数结构
- 批准号:
2105544 - 财政年份:2021
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似海外基金
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Conference: Algebraic Structures in Topology 2024
会议:拓扑中的代数结构 2024
- 批准号:
2348092 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Low-dimensional topology and algebraic structures
低维拓扑和代数结构
- 批准号:
22K03311 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic Structures in Topology and Geometry
拓扑和几何中的代数结构
- 批准号:
2105544 - 财政年份:2021
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Synthesising directed structures in Computer Science using Directed Algebraic Topology
使用有向代数拓扑合成计算机科学中的有向结构
- 批准号:
19K20215 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Algebraic and category-theoretic structures in low-dimensional topology
低维拓扑中的代数和范畴论结构
- 批准号:
18H01119 - 财政年份:2018
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Generalized complex structures, 4 dimensional differential topology, noncommutative algebraic geometry and derived category
广义复结构、4维微分拓扑、非交换代数几何和派生范畴
- 批准号:
16K13755 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Low-dimensional topology and algebraic and category-theoretic structures
低维拓扑以及代数和范畴论结构
- 批准号:
15K04873 - 财政年份:2015
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The algebraic structures behind higher homotopies in symplectic topology.
辛拓扑中更高同伦背后的代数结构。
- 批准号:
1105837 - 财政年份:2011
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant