RII Track-4:NSF: Assessment of Multiscale Air Quality Model (CMAQ) Representation of Spatiotemporal Atmospheric Nitrate Chemical Production in New England

RII Track-4:NSF:新英格兰时空大气硝酸盐化学品生产的多尺度空气质量模型 (CMAQ) 表示评估

基本信息

  • 批准号:
    2410015
  • 负责人:
  • 金额:
    $ 16.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Nitrate is a key component of the atmosphere that derives from precursor nitrogen oxide emissions that have important implications for air quality, acid deposition, and climate. Nitrogen oxide emissions are dominated by anthropogenic activities, typically associated with fossil-fuel combustion, which has dramatically declined across the US over the last several decades due to effective regulations. Yet, atmospheric deposition of nitrate remains a significant environmental stressor. Atmospheric chemistry transport models, which are commonly utilized to help guide policy, have difficulties reproducing observed atmospheric nitrate concentrations and deposition, resulting in unclear guidelines to improve existing Clean Air Act Secondary Standards. This disagreement may be related to complicated production mechanisms of atmospheric nitrate, requiring a deeper understanding of nitrate atmospheric chemistry to better predict the atmospheric burden of nitrogen deposition. In this project, the PI will partner with scientists from the US EPA Research Triangle Park to evaluate and improve upon a commonly utilized atmospheric chemistry and transport model’s representation of atmospheric nitrate formation utilizing a novel oxygen isotope tracer technique (Δ17O). Using a three-dimensional atmospheric chemistry and transport model, this project will enhance the PI’s research expertise and contribute to the training and learning of a graduate student. This project will establish new and long-lasting collaborations between the PI and host scientists. Project outcomes will include establishing the first atmospheric chemistry and transport model at Brown University that will be utilized in future research projects by the PI and other collaborators at Brown, enhancing Rhode Island's research capabilities. The oxygen stable isotopic composition (Δ17O) has been proven to provide quantitative observational constraints on the production mechanisms of atmospheric nitrate. This is because key atmospheric oxidants have distinctive Δ17O signatures (or "fingerprints") incorporated in the product nitrate derived from the oxidation of precursor nitrogen oxide emissions. This work will evaluate the chemical representation of spatiotemporal atmospheric nitrate production in New England from 2005-2017 using the Community Multiscale Air Quality Model (CMAQ). Model simulations will be conducted using a high-resolution US domain, and atmospheric nitrate formation pathways will be tagged and used to calculate the oxygen stable isotopic composition that quantitatively expresses nitrate production mechanisms. The model output will be used to compare with detailed spatiotemporal Δ17O observations of atmospheric nitrate in New England, leveraging detailed Δ17O data from prior NSF support to test and improve upon atmospheric chemistry model representation of nitrate chemistry in New England. The goals of this project include evaluating the chemical representation of the spatiotemporal formation of atmospheric nitrate and differences between nitric acid and particulate nitrate across the northeastern US during a period of significant reductions in nitrogen oxide emissions. Ultimately, this project will lead to a better understanding of the role of emission reductions on the atmospheric cycle of nitrogen and its connection to atmospheric composition, air quality, and acid deposition.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
硝酸盐是大气的关键成分,源自前体氮氧化物排放,对空气质量、酸沉降和气候具有重要影响。 氮氧化物排放主要由人类活动造成,通常与化石燃料燃烧有关,由于有效的监管,过去几十年来,美国各地的氮氧化物排放量急剧下降。 然而,大气中硝酸盐的沉积仍然是一个重要的环境压力源。 通常用于帮助指导政策的大气化学传输模型难以再现观测到的大气硝酸盐浓度和沉积,导致改善现有清洁空气法二级标准的指导方针不明确。这种分歧可能与大气硝酸盐复杂的产生机制有关,需要更深入地了解硝酸盐大气化学,才能更好地预测氮沉降的大气负担。 在该项目中,PI 将与美国 EPA 研究三角园的科学家合作,利用新型氧同位素示踪技术 (Δ17O) 来评估和改进常用的大气化学和传输模型,以表示大气硝酸盐的形成。 该项目使用三维大气化学和传输模型,将增强 PI 的研究专业知识,并有助于研究生的培训和学习。 该项目将在 PI 和主办科学家之间建立新的、持久的合作。 项目成果将包括在布朗大学建立第一个大气化学和传输模型,该模型将由 PI 和布朗大学的其他合作者在未来的研究项目中使用,从而增强罗德岛州的研究能力。氧稳定同位素组成(Δ17O)已被证明可以为大气硝酸盐的产生机制提供定量观测约束。 这是因为主要大气氧化剂具有独特的 Δ17O 特征(或“指纹”),这些特征包含在前体氮氧化物排放氧化产生的硝酸盐产物中。 这项工作将使用社区多尺度空气质量模型 (CMAQ) 评估 2005 年至 2017 年新英格兰时空大气硝酸盐生产的化学表征。 将使用高分辨率 US 域进行模型模拟,并将标记大气硝酸盐形成途径并用于计算定量表达硝酸盐产生机制的氧稳定同位素组成。 该模型输出将用于与新英格兰大气硝酸盐的详细时空 Δ17O 观测进行比较,利用先前 NSF 支持的详细 Δ17O 数据来测试和改进新英格兰硝酸盐化学的大气化学模型表示。 该项目的目标包括评估大气硝酸盐时空形成的化学表征,以及在氮氧化物排放量大幅减少期间美国东北部硝酸盐和颗粒硝酸盐之间的差异。 最终,该项目将有助于更好地了解减排对大气氮循环的作用及其与大气成分、空气质量和酸沉降的关系。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wendell Walters其他文献

Wendell Walters的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wendell Walters', 18)}}的其他基金

Evaluating the Atmospheric Dynamics of Nitrate and Sulfate in Southern New England in Response to Emission Regulations
评估新英格兰南部硝酸盐和硫酸盐的大气动态以响应排放法规
  • 批准号:
    2414561
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Continuing Grant
Quantifying Natural and Anthropogenic Influences on Nitrogen Oxides Emissions and Chemistry
量化自然和人为对氮氧化物排放和化学的影响
  • 批准号:
    2404581
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Assessment of Multiscale Air Quality Model (CMAQ) Representation of Spatiotemporal Atmospheric Nitrate Chemical Production in New England
RII Track-4:NSF:新英格兰时空大气硝酸盐化学品生产的多尺度空气质量模型 (CMAQ) 表示评估
  • 批准号:
    2131951
  • 财政年份:
    2022
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Evaluating the Atmospheric Dynamics of Nitrate and Sulfate in Southern New England in Response to Emission Regulations
评估新英格兰南部硝酸盐和硫酸盐的大气动态以响应排放法规
  • 批准号:
    2002750
  • 财政年份:
    2020
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Continuing Grant
AGS-PRF: Constraining Ammonia Emission Sources in Urban Areas Utilizing Nitrogen Stable Isotopes
AGS-PRF:利用氮稳定同位素限制城市地区的氨排放源
  • 批准号:
    1624618
  • 财政年份:
    2016
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Fellowship Award

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
  • 批准号:
    2327349
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了