CAREER: Data-Driven Systematic Hierarchical Modeling
职业:数据驱动的系统分层建模
基本信息
- 批准号:2410514
- 负责人:
- 金额:$ 68.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-12-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Jianing Li of the University of Vermont & State Agricultural College is jointly supported by the Chemical Theory, Models and Computational Methods program in the Division of Chemistry and the Established Program to Stimulate Competitive Research (EPSCoR) to predict the properties of materials using computer simulation models. The question of how to correlate molecular structures to material properties has been central to the chemical sciences. Computer modeling has been invaluable to help answer this fundamental question, but it is still very difficult to predict the properties of larger structures. Current simulation methods often reach their limitations, since they are not able to emulate large systems for long enough times. Dr. Li is now taking advantage of the immense data from molecular simulations previously completed. She is inventing an efficient approach to automatically learn from existing data to build new molecular models. These models are able to decrease the difficulty of simulating the large amount of underlying molecular components. By connecting these models to predictions of material properties (like stability, shape, and size), Dr. Li is using simulation methods to screen natural and man-made polymers for desirable properties and to accelerate the discovery of new materials. The materials designed in this project will be biocompatible, bioactive nanomaterials for numerous applications in sensing, drug delivery, tissue engineering, etc. The project also provides educational opportunities for students at multiple stages of their career development, by training graduate students with an interdisciplinary focus, as well as by encouraging undergraduate students early on to experiment independently with molecular modeling. The educational activities will broaden STEM participation by providing new learning and research opportunities to undergraduate students. Travel awards will be established to encourage underrepresented students in Vermont to attend the Green Mountain Winter Camp alongside their mentors and peers. For future technological advances in soft materials (e.g. to create new programmable, biocompatible nanostructures formed by peptides, DNAs, and organic polymers) it is critical to understand complex self-assembly processes and to be able to accurately predict the resulting structures. Hierarchical modeling represents an invaluable tool to understand such processes, since it can examine and predict (often in greater detail than experiments) how self-assembly occurs at the relevant atomic, nanoscopic, and mesoscopic scales. However, to invent more powerful hierarchical computational methods for the future, universal highly coarse-grained (HCG) force fields in conjugation with effective backmapping methods are needed. To target these challenges, Dr. Li is creating a systematic, data-driven hierarchical (STAIR) methodology for multiscale modeling. STAIR is designed to overcome major drawbacks of currently available methods for systematic coarse graining, which still require substantial human expertise and labor for force field development. Specifically, STAIR replaces expensive fitting processes by innovative neural network algorithms and reduce human efforts in tasks like particle type determination, ad hoc corrections, etc. With the long-term goal to guide the rational design of complex nanomaterials from relatively simple building blocks, the overall objective is to invent hierarchical, adaptive modeling methods to guide the development of peptide- and DNA-based self-assembled nanomaterials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
佛蒙特州立大学农学院的Jianing Li由化学系的化学理论,模型和计算方法计划以及刺激竞争研究的既定计划(EPSCoR)共同支持,使用计算机模拟模型预测材料的特性。&如何将分子结构与材料性质联系起来的问题一直是化学科学的中心问题。计算机建模在帮助回答这个基本问题方面具有非常宝贵的价值,但预测更大结构的性质仍然非常困难。目前的仿真方法往往达到其局限性,因为它们不能仿真足够长的时间的大型系统。李博士现在正在利用以前完成的分子模拟的大量数据。她正在发明一种有效的方法,可以从现有数据中自动学习,以建立新的分子模型。这些模型能够降低模拟大量潜在分子组分的难度。通过将这些模型与材料特性(如稳定性、形状和尺寸)的预测相联系,李博士正在使用模拟方法来筛选天然和人造聚合物的理想特性,并加速新材料的发现。在这个项目中设计的材料将是生物相容性,生物活性纳米材料在传感,药物输送,组织工程等众多应用该项目还提供了教育机会,为学生在他们的职业发展的多个阶段,通过培养研究生与跨学科的重点,以及鼓励本科生早期独立实验与分子建模。 教育活动将通过为本科生提供新的学习和研究机会来扩大STEM的参与。 将设立旅行奖励,以鼓励佛蒙特州代表性不足的学生与他们的导师和同龄人一起参加绿色山冬令营。对于未来软材料的技术进步(例如,创建由肽,DNA和有机聚合物形成的新的可编程,生物相容性纳米结构),了解复杂的自组装过程并能够准确预测所得结构至关重要。分层建模是理解这些过程的宝贵工具,因为它可以检查和预测(通常比实验更详细)自组装如何在相关的原子,纳米和介观尺度上发生。然而,发明更强大的分层计算方法的未来,通用的高度粗粒度(HCG)的力场共轭与有效的映射方法是必要的。为了应对这些挑战,Li博士正在创建一种用于多尺度建模的系统化数据驱动层次(STAIR)方法。STAIR旨在克服目前可用的系统粗粒化方法的主要缺点,这些方法仍然需要大量的人力专业知识和劳动力来开发力场。具体而言,STAIR通过创新的神经网络算法取代了昂贵的拟合过程,并减少了颗粒类型确定,特别校正等任务中的人工努力。长期目标是从相对简单的构建模块指导复杂纳米材料的合理设计,总体目标是发明分层,自适应建模方法,以指导肽和DNA为基础的自我,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识产权进行评估来支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianing Li其他文献
Mass spectra of doubly heavy tetraquarks in an improved chromomagnetic interaction model
改进的色磁相互作用模型中双重四夸克的质谱
- DOI:
10.1103/physrevd.105.014021 - 发表时间:
2021-08 - 期刊:
- 影响因子:5
- 作者:
Tao Guo;Jianing Li;Jiaxing Zhao;Lianyi He - 通讯作者:
Lianyi He
Iridium-Catalyzed Hydrosilylation of Unactivated Alkenes: Scope and Application to Late-Stage Functionalization
未活化烯烃的铱催化硅氢加成:后期功能化的范围和应用
- DOI:
10.1021/acs.joc.8b02838 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xingze Xie;Xueyan Zhang;Haoyu Yang;Xin Ji;Jianing Li;Shengtao Ding - 通讯作者:
Shengtao Ding
Dynamic Refractive Index‐Matching for Adaptive Thermoresponsive Smart Windows
动态折射率 — 自适应热响应智能窗户的匹配
- DOI:
10.1002/smll.202201322 - 发表时间:
2022 - 期刊:
- 影响因子:13.3
- 作者:
Jianing Li;Xuegang Lu;Yin Zhang;Xiaoxiang Wen;Kangkang Yao;Fei Cheng;Dingchen Wang;Xiaoqin Ke;Hao Zeng;Sen Yang - 通讯作者:
Sen Yang
Chiming In: A Computer-Assisted Analysis of Popular Musicians’ Political Engagement on Twitter
插话:对推特上流行音乐家政治参与的计算机辅助分析
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:5.2
- 作者:
Josephine Lukito;Luis Loya;Carlos Dávalos;Jianing Li;Chau Tong;D. McLeod - 通讯作者:
D. McLeod
Green carbon quantum dots from sustainable lignocellulosic biomass and its application in the detection of Fe3+
来自可持续木质纤维素生物质的绿色碳量子点及其在 Fe3 检测中的应用
- DOI:
10.1007/s10570-021-04314-7 - 发表时间:
2021-11 - 期刊:
- 影响因子:5.7
- 作者:
Yujuan Qiu;Dongna Li;Yachao Li;Xiaojun Ma;Jianing Li - 通讯作者:
Jianing Li
Jianing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianing Li', 18)}}的其他基金
CAREER: Data-Driven Systematic Hierarchical Modeling
职业:数据驱动的系统分层建模
- 批准号:
1945394 - 财政年份:2020
- 资助金额:
$ 68.75万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
$ 68.75万 - 项目类别:
Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 68.75万 - 项目类别:
Standard Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 68.75万 - 项目类别:
Standard Grant
CAREER: Data-driven Multiscale Modeling of Complex Traffic Systems Utilizing Networked Driving Simulators
职业:利用网络驾驶模拟器对复杂交通系统进行数据驱动的多尺度建模
- 批准号:
2238359 - 财政年份:2023
- 资助金额:
$ 68.75万 - 项目类别:
Standard Grant
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
- 批准号:
2238415 - 财政年份:2023
- 资助金额:
$ 68.75万 - 项目类别:
Continuing Grant
CAREER: A Holistic Developer-Centered Approach to Enhance Privacy for Data-Driven Applications
职业:以开发人员为中心的整体方法来增强数据驱动应用程序的隐私
- 批准号:
2238047 - 财政年份:2023
- 资助金额:
$ 68.75万 - 项目类别:
Continuing Grant
CAREER: Machine Learning for Data-Driven Fault-Tolerant Control of Complex Systems
职业:用于复杂系统数据驱动容错控制的机器学习
- 批准号:
2426614 - 财政年份:2023
- 资助金额:
$ 68.75万 - 项目类别:
Standard Grant
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
- 批准号:
2316675 - 财政年份:2023
- 资助金额:
$ 68.75万 - 项目类别:
Standard Grant
CAREER: Building long-term climate resilience in 21st-century regional urban land systems through integrated data-driven research and education
职业:通过综合数据驱动的研究和教育,在 21 世纪区域城市土地系统中建立长期的气候适应能力
- 批准号:
2239859 - 财政年份:2023
- 资助金额:
$ 68.75万 - 项目类别:
Continuing Grant
CAREER: Data-Driven Control of High-Rate Dynamic Systems
职业:高速动态系统的数据驱动控制
- 批准号:
2237696 - 财政年份:2023
- 资助金额:
$ 68.75万 - 项目类别:
Continuing Grant