Computational Materials Discovery at Room Temperature: towards Net Zero

室温下计算材料的发现:迈向净零

基本信息

  • 批准号:
    MR/V023926/1
  • 负责人:
  • 金额:
    $ 173.99万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Environmental sustainability is the great challenge of our generation. We produce energy in an unsustainable manner, with green energy sources still in the minority worldwide. Once this energy is produced, most of it is wasted due to inefficient use, something everyone has experienced when their laptop insists on heating up rather than harnessing all available energy to run faster. And yet this everyday experience dwarfs the amounts of energy wasted in data centres to power our increasingly large use of information technology, from social networks to bank transactions. The scale of the problem, and our inability to find a viable solution thus far, suggest that a radical solution is necessary.Historically, the major eras of human development have been driven by scientific and technological breakthroughs defined by the materials that enabled them: the stone age, the iron age, all the way to our current silicon age. The only way to maintain our standards of living while making sure that we do not cause cataclysmic changes to Earth's climate and environment may be to ask ourselves the question: What material should power the next sustainable age for humanity?We know of exotic materials, called topological materials, that can carry currents without energy losses. These materials could dramatically reduce energy waste. What is the challenge? The currently known topological materials only exist at temperatures close to the absolute zero, about negative 273 degrees Celsius, therefore rendering practical applications impossible.We also know of materials, called singlet-fission materials, that can generate twice as much energy from absorbing solar light compared to conventional materials like silicon. These materials could double the efficiencies of solar cells. What is the challenge? We are yet to identify an optimal singlet-fission material that can be properly integrated in a solar cell device.In this project we propose to discover the driver materials for the next sustainable stage of human development. The experimental discovery of materials is a slow, costly, and often serendipitous process. Instead, we propose to discover new materials in a virtual laboratory, powered by our novel, more efficient ways of solving the equations of quantum mechanics, which describe the fundamental microscopic behaviour of matter. The computational design of materials provides microscopic insights at small cost and with fast turnover, making materials discovery a predictive, rather than a lucky, process.As quantum mechanics is a theory that describes all of visible matter - from a single hydrogen atom, to a strand of DNA, to a complex material - the computational tools we develop for materials discovery are applicable to all sorts of materials science problems. We therefore propose to build on our developments in quantum mechanics to tackle two of the core questions in the energy challenge: efficient energy use, by searching for room-temperature topological materials to enable low-power electronics and reduce energy waste; and efficient energy generation, by searching for singlet-fission materials that can double the efficiency of solar cells. These developments will help accelerate the transition to the new sustainable age.
环境可持续性是我们这一代人面临的巨大挑战。我们以不可持续的方式生产能源,绿色能源在世界范围内仍占少数。一旦产生这种能量,大部分都由于使用效率低下而浪费掉了,每个人都经历过笔记本电脑坚持加热而不是利用所有可用的能量来更快地运行。然而,从社交网络到银行交易,这些日常经验使数据中心浪费的能源相形见绌。从历史上看,人类发展的主要时代都是由科学和技术突破推动的,这些突破是由使它们得以实现的材料所定义的:石器时代,铁器时代,一直到我们现在的硅时代。要维持我们的生活水平,同时确保我们不会对地球的气候和环境造成灾难性的变化,唯一的方法可能是问自己这样一个问题:什么材料应该为人类的下一个可持续时代提供动力?我们知道一些奇异的材料,称为拓扑材料,可以携带电流而没有能量损失。这些材料可以大大减少能源浪费。挑战是什么?目前已知的拓扑材料只存在于接近绝对零度的温度下,约为负273摄氏度,因此无法实现实际应用。我们还知道一种称为单重态裂变材料的材料,与硅等传统材料相比,它可以通过吸收太阳光产生两倍的能量。这些材料可以使太阳能电池的效率提高一倍。挑战是什么?我们还没有找到一种最佳的单重态裂变材料,可以适当地集成在太阳能电池设备中。在这个项目中,我们建议为人类发展的下一个可持续阶段发现驱动材料。材料的实验发现是一个缓慢、昂贵且常常是偶然发现的过程。相反,我们建议在虚拟实验室中发现新材料,由我们新颖的,更有效的解决量子力学方程的方法提供动力,这些方程描述了物质的基本微观行为。材料的计算设计以低成本和快速周转提供微观洞察,使材料发现成为一个预测性而不是幸运的过程。由于量子力学是一种描述所有可见物质的理论-从单个氢原子到DNA链再到复杂材料-我们为材料发现开发的计算工具适用于各种材料科学问题。因此,我们建议以量子力学的发展为基础,解决能源挑战中的两个核心问题:通过寻找室温拓扑材料来实现低功率电子器件并减少能源浪费,从而有效利用能源;通过寻找可以使太阳能电池效率翻倍的单重态裂变材料来有效发电。这些发展将有助于加速向新的可持续时代过渡。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Finite-temperature effects on the x-ray absorption spectra of crystalline alumina from first principles
  • DOI:
    10.1063/5.0146033
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Angela F. Harper;B. Monserrat;A. J. Morris
  • 通讯作者:
    Angela F. Harper;B. Monserrat;A. J. Morris
Nonuniform grids for Brillouin zone integration and interpolation
  • DOI:
    10.1103/physrevb.106.155102
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Siyu Chen;Pascal T. Salzbrenner;B. Monserrat
  • 通讯作者:
    Siyu Chen;Pascal T. Salzbrenner;B. Monserrat
Investigation of Singlet Fission-Halide Perovskite Interfaces.
调查单线裂变 - 半甲基钙钛矿界面。
  • DOI:
    10.1021/acs.chemmater.1c04310
  • 发表时间:
    2022-06-14
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bowman, Alan R.;Stranks, Samuel D.;Monserrat, Bartomeu
  • 通讯作者:
    Monserrat, Bartomeu
Non-Abelian braiding of Weyl nodes via symmetry-constrained phase transitions
  • DOI:
    10.1103/physrevb.105.l081117
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Siyu Chen;Adrien Bouhon;Robert-Jan Slager;B. Monserrat
  • 通讯作者:
    Siyu Chen;Adrien Bouhon;Robert-Jan Slager;B. Monserrat
Layered BiOI single crystals capable of detecting low dose rates of X-rays.
  • DOI:
    10.1038/s41467-023-38008-4
  • 发表时间:
    2023-04-28
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Jagt, Robert A.;Bravic, Ivona;Eyre, Lissa;Galkowski, Krzysztof;Borowiec, Joanna;Dudipala, Kavya Reddy;Baranowski, Michal;Dyksik, Mateusz;Van de Goor, Tim W. J.;Kreouzis, Theo;Xiao, Ming;Bevan, Adrian;Plochocka, Paulina;Stranks, Samuel D.;Deschler, Felix;Monserrat, Bartomeu;MacManus-Driscoll, Judith L.;Hoye, Robert L. Z.
  • 通讯作者:
    Hoye, Robert L. Z.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bartomeu Monserrat其他文献

Origin of competing charge density waves in kagome metal ScV6Sn6
卡戈米金属 ScV6Sn6 中竞争电荷密度波的起源
  • DOI:
    10.1038/s41467-024-54702-3
  • 发表时间:
    2024-11-30
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Kang Wang;Siyu Chen;Sun-Woo Kim;Bartomeu Monserrat
  • 通讯作者:
    Bartomeu Monserrat

Bartomeu Monserrat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Journal of Materials Science & Technology
  • 批准号:
    51024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329087
  • 财政年份:
    2023
  • 资助金额:
    $ 173.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329089
  • 财政年份:
    2023
  • 资助金额:
    $ 173.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329090
  • 财政年份:
    2023
  • 资助金额:
    $ 173.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329088
  • 财政年份:
    2023
  • 资助金额:
    $ 173.99万
  • 项目类别:
    Standard Grant
REU site: Experimental and Computational Methods for Materials Discovery
REU 网站:材料发现的实验和计算方法
  • 批准号:
    2244024
  • 财政年份:
    2023
  • 资助金额:
    $ 173.99万
  • 项目类别:
    Standard Grant
Computational Discovery of New Spectrally Selective Materials for Thin Film Applications
用于薄膜应用的新型光谱选择材料的计算发现
  • 批准号:
    2490978
  • 财政年份:
    2021
  • 资助金额:
    $ 173.99万
  • 项目类别:
    Studentship
Novel computational routes to materials discovery
材料发现的新计算途径
  • 批准号:
    EP/T000163/1
  • 财政年份:
    2020
  • 资助金额:
    $ 173.99万
  • 项目类别:
    Fellowship
Assessing Synthetic Difficulty in Computational Materials Discovery
评估计算材料发现中的合成难度
  • 批准号:
    2897872
  • 财政年份:
    2020
  • 资助金额:
    $ 173.99万
  • 项目类别:
    Studentship
EAGER: Thermal Materials Discovery via Deep Learning based High-Throughput Computational Screening
EAGER:通过基于深度学习的高通量计算筛选来发现热材料
  • 批准号:
    1905775
  • 财政年份:
    2019
  • 资助金额:
    $ 173.99万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an HPC System for Data-Driven Discovery in Computational Astrophysics, Biology, Chemistry, and Materials Science
MRI:获取 HPC 系统,用于计算天体物理学、生物学、化学和材料科学中的数据驱动发现
  • 批准号:
    1828187
  • 财政年份:
    2018
  • 资助金额:
    $ 173.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了