Immobilization of Hydrogen-Bonded Capsules on Silicon Wafer

氢键胶囊在硅片上的固定化

基本信息

  • 批准号:
    259032434
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2014
  • 资助国家:
    德国
  • 起止时间:
    2013-12-31 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

In this project, we are aiming at the immobilization of hydrogen-bonded capsules on silicon wafers and explore the physical organic and material properties of these molecular architectures with purpose to develop drug-delivery systems and supramolecular Velcro. We will synthesize cavitands with alkene feets which can self-assemble into capsular structures templated by a variety of guest molecules. The terminal alkenes are well suited for a photochemical or thermal deposition of the cavitands on hydrogen-terminated silicon through hydrosilylation. For the characterization and study of the modified surface and capsule self-assembly we will use multiple surface analysis methods as well as the encapsulation-enabled fluorescence turn-on properties of guest 4,4-dimethylbenzil. The capsular structures used here are held together by very strong hydrogen bonds and can even survive in water. Therefore, this system may be well suited to a drug-delivery system for appropriate shaped drug molecules which fit into the capsule`s cavity. Meanwhile, a supramolecular Velcro can be constructed from an inter-surface capsule self-assembly and this system may survive in vacuum, air and a variety of solvents and thus finds broad applications. In addition, the capsule formation is strongly dependent on the template effect of guests. Therefore, the strength of this supramolecular Velcro may be well tuned by using different guest molecules. For example, a photo-switchable guest, such as 4,4-dimethylazobenzene, may even endow the supramolecular Velcro with photoswitchability. Therefore, we believe the research in this project will open new frontiers for applications of surfaces modified by supramolecular architectures.
在这个项目中,我们的目标是将氢键胶囊固定在硅片上,并探索这些分子结构的物理有机和材料性质,目的是开发药物递送系统和超分子Velcro。我们将合成具有烯烃足的空穴,其可以自组装成由各种客体分子模板化的囊状结构。末端烯烃非常适合于通过氢化硅烷化在氢封端的硅上光化学或热沉积空穴。对于改性表面和胶囊自组装的表征和研究,我们将使用多种表面分析方法以及客体4,4-二甲基苯偶酰的荧光开启特性。这里使用的囊状结构通过非常强的氢键结合在一起,甚至可以在水中存活。因此,该系统可以很好地适用于药物递送系统,用于适合胶囊腔体的适当形状的药物分子。同时,超分子Velcro可以由表面间胶囊自组装而成,该系统可以在真空、空气和各种溶剂中存活,因此具有广泛的应用。此外,胶囊的形成强烈依赖于客体的模板效应。因此,可以通过使用不同的客体分子来很好地调节这种超分子Velcro的强度。例如,光可转换客体,如4,4-二甲基偶氮苯,甚至可以赋予超分子维可牢尼龙搭扣以光可转换性。因此,我们相信本项目的研究将为超分子结构修饰表面的应用开辟新的前沿。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Sebastian Richter其他文献

Dr. Sebastian Richter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Hydrogen-Bonded Organic Frameworks Nanoparticles for Ultrasound-Activated, Genetically-Targeted Neuromodulation
职业:用于超声激活、基因靶向神经调节的氢键有机框架纳米颗粒
  • 批准号:
    2340964
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Designing Elastic Hydrogen-bonded Crosslinked Porous Organic Materials
职业:设计弹性氢键交联多孔有机材料
  • 批准号:
    2413574
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Combining quantum multicomponent molecular theory and data science to understand the mechanism of physical properties in low-barrier hydrogen-bonded systems
结合量子多组分分子理论和数据科学来理解低势垒氢键系统的物理性质机制
  • 批准号:
    23K17905
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
GOALI: Designing Adaptive Hydrogen-bonded Frameworks for Molecular Structure Determination
目标:设计用于分子结构测定的自适应氢键框架
  • 批准号:
    2002964
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Electron transfer in hydrogen bonded metal-organic materials.
氢键金属有机材料中的电子转移。
  • 批准号:
    2447951
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
non-equllibrium dynamics of hydrogen-bonded molecular assembly
氢键分子组装的非平衡动力学
  • 批准号:
    20K05476
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functional Hydrogen-Bonded Self-Sorting Networks
功能性氢键自排序网络
  • 批准号:
    EP/T011726/1
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Photodynamic effect of hydrogen bonded supramolecular polymer having photoswitch
具有光开关的氢键超分子聚合物的光动力效应
  • 批准号:
    20K05247
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Detecting feeble signal utilizing stochastic resonance in hydrogen-bonded molecular conductors and its application
利用氢键分子导体中的随机共振检测微弱信号及其应用
  • 批准号:
    19K22123
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Structural study of pressure-induced phase of hydrogen-bonded supramolecular ferroelectrics
氢键超分子铁电体压力诱导相的结构研究
  • 批准号:
    19K03728
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了