Transient Behavior and Entropy for Dynamical and Control Systems

动力和控制系统的瞬态行为和熵

基本信息

项目摘要

The aim of this project is to analyze transient behavior of deterministic control systems and of random dynamical systems. For control systems, the recently introduced notion of (topological) invariance entropy which has been developed in analogy to topological entropy of dynamical systems describes the difficulty to keep a control system in a fixed subset of the state space and gives insight into the required minimal data rates. On the other hand, one may formally replace the control term by a (bounded) random perturbation. Here it is well known that the supports of stationary measures for random dynamical systems can often be described by invariant control sets, i.e., invariant subsets of complete approximate controllability. The proposed project is built on conditionally stationary (probability) measures instead of stationary measures. They describe the transient behavior of random dynamical systems and, via the skew product formalism, they are closely related to conditionally invariant measures of deterministic dynamical systems. It is expected that the supports of conditionally stationary measures can often be described by relatively invariant control sets, instead of invariant control sets. The first part of the project will analyze relatively invariant control sets. Then conditionally stationary measures and the relation of their supports to controllability properties will be analyzed. The third part of the project will be devoted to a metric notion of invariance entropy based on conditionally stationary measures. In particular, the relation to the topological invariance entropy will be explored with a view toward a variational principle. All parts of the project will be considered for systems in discrete and in continuous time. The expected results will be of relevance in the analysis of the connections between the transient behavior of random systems and control systems, as well as in the analysis of minimal data rates for digitally connected control systems.
本课题的目的是分析确定性控制系统和随机动力系统的暂态行为。对于控制系统,最近引入的(拓扑)不变性熵(topological invariance entropy)的概念描述了将控制系统保持在状态空间的固定子集中的困难,并给出了所需的最小数据速率的见解。另一方面,形式上可以用一个(有界的)随机扰动代替控制项。众所周知,随机动力系统的平稳测度的支持通常可以用不变控制集来描述,即完全近似可控性的不变子集。建议的项目是建立在有条件的平稳(概率)措施,而不是平稳措施。它们描述了随机动力系统的瞬态行为,并通过偏积形式,与确定性动力系统的条件不变测度密切相关。期望条件平稳测度的支持通常可以用相对不变的控制集来描述,而不是不变的控制集。项目的第一部分将分析相对不变的控制集。然后分析了条件平稳测度及其支撑与可控性的关系。该项目的第三部分将致力于基于条件平稳度量的不变性熵的度量概念。特别地,将从变分原理的角度来探讨与拓扑不变性熵的关系。项目的所有部分将考虑系统在离散和连续时间。预期结果将在分析随机系统和控制系统的暂态行为之间的联系以及分析数字连接控制系统的最小数据速率方面具有相关性。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supports of invariant measures for piecewise deterministic Markov processes
支持分段确定性马尔可夫过程的不变测量
  • DOI:
    10.1088/1361-6544/aa7e94
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Benaïm;Colonius;Lettau
  • 通讯作者:
    Lettau
Decay rates for stabilization of linear continuous-time systems with random switching
  • DOI:
    10.3934/mcrf.2019002
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    F. Colonius;Guilherme Mazanti
  • 通讯作者:
    F. Colonius;Guilherme Mazanti
Relative controllability properties
相对可控性
  • DOI:
    10.1093/imamci/dnv004
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Colonius;R. Lettau
  • 通讯作者:
    R. Lettau
Metric invariance entropy and conditionally invariant measures
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Fritz Colonius其他文献

Professor Dr. Fritz Colonius的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Fritz Colonius', 18)}}的其他基金

Informationsmaße und Invarianz für vernetzte Kontrollsysteme
网络控制系统的信息维度和不变性
  • 批准号:
    43004829
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Fabrication of bulk nanocrystalline high-entropy alloys by electrodeposition and characterization of their deformation behavior
电沉积块体纳米晶高熵合金的制备及其变形行为表征
  • 批准号:
    23KJ1828
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
MANET: Maximum Entropy Neural Networks for Mechanistic Modeling of Single Cell Behavior
MANET:用于单细胞行为机械建模的最大熵神经网络
  • 批准号:
    10273855
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
MANET: Maximum Entropy Neural Networks for Mechanistic Modeling of Single Cell Behavior
MANET:用于单细胞行为机械建模的最大熵神经网络
  • 批准号:
    10680431
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
MANET: Maximum Entropy Neural Networks for Mechanistic Modeling of Single Cell Behavior
MANET:用于单细胞行为机械建模的最大熵神经网络
  • 批准号:
    10953177
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
CAREER: An Efficient First-Principles Method for Calculating Deformation Properties, Diffusivity, and Secondary Creep-Rate Behavior in BCC High-Entropy Alloys
职业生涯:一种计算 BCC 高熵合金变形特性、扩散率和二次蠕变速率行为的有效第一性原理方法
  • 批准号:
    2046670
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Grain refinement and deformation behavior of non-equiatomic high entropy alloys
非等原子高熵合金的晶粒细化及变形行为
  • 批准号:
    17H03415
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fundamental Study of Low-Cycle-Fatigue Behavior of High-Entropy Alloys
高熵合金低周疲劳行为的基础研究
  • 批准号:
    1611180
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Investigation on deformation behavior of high entropy alloy single crystals
高熵合金单晶变形行为研究
  • 批准号:
    26630348
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Defect Structure and Mechanical Behavior of High Entropy Alloys
高熵合金的缺陷结构和力学行为
  • 批准号:
    1104930
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development for automatic diagnosis system for health condition, using entropy of behavior information
利用行为信息熵的健康状况自动诊断系统的开发
  • 批准号:
    18500444
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了