Standing and Outward Radiating Wave Solutions of Nonlinear Helmholtz Equations

非线性亥姆霍兹方程的驻波解和向外辐射波解

基本信息

  • 批准号:
    263284198
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2014
  • 资助国家:
    德国
  • 起止时间:
    2013-12-31 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Wave propagation in nonlinear media has emerged as one of the most intriguing research topics in the field of nonlinear analysis and partial differential equations. Whereas the occurence of standing waves, dispersion, and wave scattering is by now reasonably well understood in a linear context, it gives rise to an abundance of open questions in the nonlinear setting. The present project is devoted to the study of time periodic solutions of the nonlinear Klein-Gordon equation representing standing or scattered outward radiating waves with high frequency. The time periodic ansatz leads to the nonlinear Helmholtz equation, which has attracted growing attention recently as it arises in various problems where the presence of essential spectrum hampers the understanding of nonlinear effects. The present proposal builds on the progress made in the first funding period, in which results on the existence of standing wave solutions and solution continua have been derived, for non-critically growing nonlinearities, by means of dual variational and topological fixed point methods. We shall now tackle challenging open questions concerning the impact of critical exponents, the shape of dual ground states, the occurence of concentration phenomena, the contination of solution branches, and the nature of stationary scattering.
波在非线性介质中的传播已成为非线性分析和偏微分方程组领域中最引人注目的研究课题之一。虽然驻波、色散和波散射的发生现在在线性背景下已经被很好地理解了,但它在非线性背景下引起了大量的未决问题。本项目致力于研究非线性Klein-Gordon方程的时间周期解,该方程代表高频向外辐射的驻波或散射波。时间周期的ansatz引出了非线性Helmholtz方程,它最近引起了越来越多的关注,因为它出现在各种问题中,其中本质谱的存在阻碍了对非线性效应的理解。本提案建立在第一个资助期取得的进展的基础上,在第一个资助期,利用对偶变分不动点方法和拓扑不动点方法,对于非临界增长的非线性项,导出了驻波解的存在性和解的连续性。我们现在将解决一些具有挑战性的公开问题,如临界指数的影响、双基态的形状、集中现象的发生、解分支的连续性以及静止散射的性质。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dual variational methods and nonvanishing for the nonlinear Helmholtz equation
  • DOI:
    10.1016/j.aim.2015.04.017
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    G. Evéquoz;T. Weth
  • 通讯作者:
    G. Evéquoz;T. Weth
Fourier extension estimates for symmetric functions and applications to nonlinear Helmholtz equations
对称函数的傅里叶扩展估计及其在非线性亥姆霍兹方程中的应用
Complex Solutions and Stationary Scattering for the Nonlinear Helmholtz Equation
非线性亥姆霍兹方程的复解和稳态散射
  • DOI:
    10.1137/19m1302314
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Evéquoz;H. Chen;T. Weth
  • 通讯作者:
    T. Weth
Multiple standing waves for the nonlinear Helmholtz equation concentrating in the high frequency limit
集中在高频极限的非线性亥姆霍兹方程的多重驻波
On the periodic and asymptotically periodic nonlinear Helmholtz equation
关于周期和渐近周期非线性亥姆霍兹方程
  • DOI:
    10.1016/j.na.2016.12.012
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Evéquoz
  • 通讯作者:
    G. Evéquoz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Tobias Weth其他文献

Professor Dr. Tobias Weth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Tobias Weth', 18)}}的其他基金

Elliptische und parabolische Randwertprobleme auf Gebieten mit nichttrivialer Topologie
非平凡拓扑域中的椭圆和抛物线边值问题
  • 批准号:
    5413446
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似海外基金

The impact of Japanese outward FDI on recipients' public governance
日本对外直接投资对受援国公共治理的影响
  • 批准号:
    23K18767
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
'An indissoluble unity': considering the relationship between outward influences and the design of Birmingham's radical newspapers 1815-36
“牢不可破的团结”:考虑外部影响与伯明翰激进报纸设计之间的关系 1815-36
  • 批准号:
    2750267
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Mechanisms of imbalanced inward and outward arteriovenous fistula remodeling
内外不平衡动静脉内瘘重塑机制
  • 批准号:
    10614369
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Mechanisms of imbalanced inward and outward arteriovenous fistula remodeling
内外不平衡动静脉内瘘重塑机制
  • 批准号:
    10047699
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Mechanisms of imbalanced inward and outward arteriovenous fistula remodeling
内外不平衡动静脉内瘘重塑机制
  • 批准号:
    10292935
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Fabrication and evaluation of film-like biomaterials for outward bone induction
用于外向骨诱导的薄膜状生物材料的制备和评估
  • 批准号:
    18K04689
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms of imbalanced inward and outward arteriovenous fistula remodeling
内外不平衡动静脉内瘘重塑机制
  • 批准号:
    9564391
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Research on China's Outward Foreign Direct Investment and, Belt and Road Initiative
中国对外直接投资与“一带一路”倡议研究
  • 批准号:
    18K11821
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Uterine Arterial Spontaneous Transient Outward Currents in Pregnancy
妊娠期子宫动脉自发瞬时外向电流
  • 批准号:
    9360213
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Exploration of synthesis and outward acceleration of circumstellar matter through simultaneous multiple-band high-resolution radio imaging
通过同时多波段高分辨率射电成像探索星周物质的合成和向外加速
  • 批准号:
    16H02167
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了