Particle Mechanics and Micropolar Continua
粒子力学和微极连续体
基本信息
- 批准号:268098820
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Engineering problems are usually described at the macroscopic scale on the basis of a Cauchy continuum. However, if microstructural processes like shear banding occur, these processes might govern the macroscopic behaviour such that extended continuum models have to be considered.To capture the microscopic response on the macroscale, the proposal concerns the investigation of continua with a distinct microstructure, which is assumed to consist of granular matter of rigid particles governed by translational and rotational degrees of freedom. Applying a particle-centre-based homogenisation over Representative Elementary Volumes (REV) of the microstructure yields macroscopic stresses and strains. This procedure also reveals the existence of non-symmetric stresses and couple stresses, for example, in shear zones, although the material has not been loaded by force couples. Obviously, it is concluded that this kind of microstructural behaviour can only be captured by an extension of the continuum theory by a micropolar approach.The goal of the project is manifold. One the one hand, the capabilities of the in-house finite-element simulation tool PANDAS will be extended from two-dimensional (2-d) to fully three-dimensional (3-d) computations of initial-boundary-value problems (IBVP) of micropolar material with elasto-plastic material properties. On the other hand, particle mechanics will be set up on the basis of the simulation tool PASIMODO based on spherically and ellipsoidally shaped particles with elasto-plastic contact forces. Both approaches will be calibrated on the basis of laboratory tests on Hostun and Karlsruhe sand as well as cold-box sand. The raw material data of Hostun sand stems from the laboratoire 3SR in Grenoble and the data for Karlsruhe sand is taken in our laboratory, while experimental data for cold-box sand will be provided by Prof. Mahnken (Paderborn).We furthermore intend to split the overall calibration procedure in two basic steps addressing homogeneous and inhomogeneous experiments, the latter taken until a shearing zone occurs. From first tests of this procedure on the continuum scale, we expect to find the standard material parameters from homogeneous and the micropolar parameters from inhomogeneous tests by the methods of back analysis. It is furthermore expected that the particle model can only be fully calibrated by the methods of back analysis, since the shape, the size and the dispersity of the particle ensemble has a crucial influence on the mechanical behaviour.After calibration, we expect that the particle model can be used, on the one hand, as a substitute for the continuum model. On the other hand, one can define an overlapping area where the particle and the continuum model exist at the same time and where information of the continuum model can be transferred to the particle model such that the particle model acts as a nested microstructure within the continuum approach.
工程问题通常在宏观尺度上用柯西连续统来描述。然而,如果微观结构的过程,如剪切带的发生,这些过程可能会支配宏观行为,使扩展的连续模型必须考虑到。为了捕捉宏观尺度上的微观响应,建议涉及的连续调查与一个独特的微观结构,这是假定由刚性颗粒的颗粒物质的平移和旋转自由度。在微观结构的代表性基本单元(REV)上应用基于颗粒中心的均匀化产生宏观应力和应变。该过程还揭示了非对称应力和力偶应力的存在,例如,在剪切区中,尽管材料没有受到力偶的加载。很明显,可以得出这样的结论,这种微观结构行为只能通过微极方法的连续介质理论的扩展来捕获。一方面,内部有限元模拟工具PANDAS的能力将从二维(2-D)扩展到全三维(3-D)计算微极材料的弹塑性材料特性的初边值问题(IBVP)。另一方面,颗粒力学将建立在模拟工具PASIMODO的基础上,基于具有弹塑性接触力的球形和椭圆形颗粒。这两种方法都将根据霍斯顿和卡尔斯鲁厄砂以及冷箱砂的实验室测试进行校准。Hostun砂的原材料数据来自格勒诺布尔的3SR实验室,卡尔斯鲁厄砂的数据来自我们的实验室,而冷箱砂的实验数据将由Mahnken教授(Paderborn)提供。此外,我们打算将整个校准程序分为两个基本步骤,分别处理均匀和非均匀实验,后者直到出现剪切区。从第一次测试的过程中的连续尺度上,我们期望找到标准的材料参数从均匀和微极参数从非均匀测试的方法的反分析。此外,预计粒子模型只能通过反分析的方法完全校准,因为粒子系综的形状,尺寸和分散性对力学行为有着至关重要的影响。校准后,我们希望粒子模型可以使用,一方面,作为连续介质模型的替代品。另一方面,可以定义重叠区域,其中颗粒和连续体模型同时存在,并且其中连续体模型的信息可以被传递到颗粒模型,使得颗粒模型充当连续体方法内的嵌套微观结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Wolfgang Ehlers其他文献
Professor Dr.-Ing. Wolfgang Ehlers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Wolfgang Ehlers', 18)}}的其他基金
Dynamic Loading of Partially-Saturated Soil: an investigation in the framework of numerical mechanics of strongly coupled problems
部分饱和土的动力加载:强耦合问题数值力学框架中的研究
- 批准号:
117493912 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Units
Diffusions- und Strömungsprozesse in der anisotropen menschlichen Bandscheibe
各向异性人体椎间盘的扩散和流动过程
- 批准号:
5415147 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Theoretical and Numerical Investigations of Swelling Phenomena of Hydrated Porous Media
水合多孔介质膨胀现象的理论和数值研究
- 批准号:
5405588 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Units
Kontinuumsmechanische und numerische Modellierung hochporöser, viskoelastischer Polymerschäume
高孔隙粘弹性聚合物泡沫的连续力学和数值模拟
- 批准号:
5146452 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
Mikro-Makro-Strategien bei der Beschreibung granularer Reibungsmaterialien
颗粒摩擦材料描述中的微观-宏观策略
- 批准号:
5320714 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Research Units
Ein Mehrpasen-Stoffmodell für Böden mit Übergang auf Interface-Gesetze
过渡到界面定律的土壤多通道材料模型
- 批准号:
5284226 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
- 批准号:
2331994 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
- 批准号:
EP/X027163/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
The mechanics of pollinator attraction: development and function of floral diffraction gratings
传粉媒介吸引机制:花衍射光栅的发展和功能
- 批准号:
BB/Y003896/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
- 批准号:
EP/Y002415/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Control of endothelial cell mechanics and blood vessel remodeling by blood flow
通过血流控制内皮细胞力学和血管重塑
- 批准号:
23K23887 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)