Development and experimental validation of methods for quantitative photoacoustic tomography of blood oxygen saturation in vivo

体内血氧饱和度定量光声断层扫描方法的开发和实验验证

基本信息

  • 批准号:
    268705117
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2014
  • 资助国家:
    德国
  • 起止时间:
    2013-12-31 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Photoacoustic (PA) tomography is an emerging biomedical imaging modality in which the absorption of short optical pulses by tissue chromophores is used to generate broadband ultrasonic waves. These waves propagate to the skin where time-resolved PA signals are detected by transducer arrays. From these signals, high resolution (tens of microns) 3-D images are then obtained using image reconstruction algorithms. Since the main tissue absorber in the visible and near-infrared wavelength region is haemoglobin, these images typically represent the vasculature. PA imaging combines a number of powerful attributes, such as multiscale imaging capabilities and strong contrast in vascularised soft tissues due to the absorption by haemoglobin where other modalities, such as MRI, x-ray CT, and ultrasound lack sensitivity. Its most powerful attribute is the potential for making spatially resolved measurements of absolute chromophore concentrations and derived parameters, such as blood oxygen saturation, which is essential for physiological and molecular imaging applications. However, this potential has yet to be harnessed. Deep tissue 3-D quantitative PA tomography in particular remains highly challenging due to the scale of the inverse problem, and has not been demonstrated in vivo to date. To translate PA tomography to a broad range of applications in the life sciences, the development of accurate and reliable methods for the solution of the inverse problem of qPAT is required. The aim of this project is the development and experimental validation of practicable methods for determining the absolute blood oxygen saturation from in vivo multiwavelength 3-D PA tomography images. The challenges that will be addressed are 1) the development of an efficient 3-D PA forward model, 2) the development of computational and experimental methods for a tractable model-based inversion, 3) the experimental validation of practicable methods for the measurement of blood oxygenation in tissue phantoms, and 4) experimental validation in vivo in a small animal model of tissue regeneration. This project will deliver the first experimentally validated methodology for the non-invasive measurement of absolute blood oxygenation in deep tissue, a major step towards the application of quantitative PA tomography in the life sciences. In addition, the knowledge gained during this project is expected to contribute substantially to the long-term development of quantitative methods for molecular PA tomography.
光声成像是一种新兴的生物医学成像方式,利用组织发色团吸收短光脉冲来产生宽带超声波。这些波传播到皮肤,在那里时间分辨PA信号被传感器阵列检测到。从这些信号中,利用图像重建算法获得高分辨率(几十微米)的三维图像。由于可见光和近红外波长区域的主要组织吸收剂是血红蛋白,因此这些图像通常代表脉管系统。PA成像结合了许多强大的属性,如多尺度成像能力和血管化软组织的强对比度,这是由于血红蛋白的吸收,而其他方式,如MRI、x线CT和超声缺乏敏感性。它最强大的特性是有可能对绝对发色团浓度和衍生参数(如血氧饱和度)进行空间分辨测量,这对生理和分子成像应用至关重要。然而,这种潜力尚未得到利用。由于逆问题的规模,深层组织3-D定量PA断层扫描尤其具有挑战性,并且迄今尚未在体内得到证实。为了使PA层析成像在生命科学中得到广泛的应用,需要开发准确可靠的方法来解决qPAT的反问题。本项目的目的是开发和实验验证从体内多波长三维断层扫描图像确定绝对血氧饱和度的可行方法。将要解决的挑战是1)开发一个高效的3- d PA正演模型,2)开发一种易于处理的基于模型的反演的计算和实验方法,3)对组织模型中血氧测量的可行方法进行实验验证,以及4)在小动物体内组织再生模型中的实验验证。该项目将提供第一个经过实验验证的方法,用于无创测量深层组织中的绝对血氧,这是向定量PA断层扫描在生命科学中的应用迈出的重要一步。此外,在这个项目中获得的知识有望为分子PA断层成像定量方法的长期发展做出重大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Jan Laufer, Ph.D.其他文献

Professor Jan Laufer, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Jan Laufer, Ph.D.', 18)}}的其他基金

Development of electro-optically tuneable Fabry-Pérot ultrasound sensors for high speed biomedical photoacoustic imaging
开发用于高速生物医学光声成像的电光可调谐法布里-珀罗超声传感器
  • 批准号:
    283368314
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Generally applicable and experimentally validated hybrid models and inversion schemes for quantitative photoacoustic tomography
普遍适用且经过实验验证的定量光声层析成像混合模型和反演方案
  • 批准号:
    451574916
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ultrasensitive all-optical scanner for biomedical photoacoustic tomography and acoustic metrology
用于生物医学光声断层扫描和声学计量的超灵敏全光学扫描仪
  • 批准号:
    516147140
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Photoacoustic tomography of fluorescent contrast agents using pump-probe-excitation
使用泵浦探针激发的荧光造影剂光声断层扫描
  • 批准号:
    462094113
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

TXNIP调控实验性青光眼视乳头星形胶质细胞的激活及其机制研究
  • 批准号:
    82371048
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
GLS1通过α-KG调控表观遗传修饰在实验性近视巩膜重塑中的作用机制
  • 批准号:
    82371092
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
多发性硬化相关microRNA和靶基因鉴定及其对Th17和Treg细胞生成及分化的作用
  • 批准号:
    81171120
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bioorthogonal probe development for highly parallel in vivo imaging
用于高度并行体内成像的生物正交探针开发
  • 批准号:
    10596786
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
  • 批准号:
    10726834
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Computational Infrastructure for Automated Force Field Development and Optimization
用于自动力场开发和优化的计算基础设施
  • 批准号:
    10699200
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Molecular Tool Development to Identify, Isolate, and Interrogate the Rod Microglia Phenotype in Neurological Disease and Injury
开发分子工具来识别、分离和询问神经系统疾病和损伤中的杆状小胶质细胞表型
  • 批准号:
    10599762
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a Colorimetric Sensor for Detection of Cerebrospinal Fluid Leaks
开发用于检测脑脊液泄漏的比色传感器
  • 批准号:
    10602859
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a Novel Calcium Channel Therapeutic for the Treatment of Asthma
开发治疗哮喘的新型钙通道疗法
  • 批准号:
    10603554
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development and In Vivo Validation of a Theoretical Framework and Practical Methods to Improve Safety and Efficacy of Neuromodulation Electrodes
提高神经调节电极安全性和有效性的理论框架和实用方法的开发和体内验证
  • 批准号:
    10572029
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Defining the MAST4 interactome in brain development and epilepsy
定义大脑发育和癫痫中的 MAST4 相互作用组
  • 批准号:
    10664122
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a sample preparation protocol for 3D kidney ultrastructural analysis and immunolabeling by light microscopy
开发用于 3D 肾脏超微结构分析和光学显微镜免疫标记的样品制备方案
  • 批准号:
    10760947
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
BIOACTIVITY ASSAY DEVELOPMENT CONSULTANT SUPPORT SERVICES
生物活性测定开发顾问支持服务
  • 批准号:
    10930681
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了