New examples for logarithmic ring spectra
对数环光谱的新示例
基本信息
- 批准号:269440134
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rings play a fundamental role in many areas of pure mathematics, for example as number rings in number theory or as building blocks of geometric objects in algebraic geometry. There are several generalizations of rings. Two of them play an important role in this project: On the one hand these are the differential graded algebras of homological algebra, which are given by chain complexes with compatible ring structures. They are a typical source of homology algebras. On the other hand, we are interested in the structured ring spectra of algebraic topology. These objects represent multiplicative cohomology theories and cover differential graded algebras as special cases. In both situations, we require that the multiplication is commutative up to coherent homotopy.The aim of this project is to find a suitable definition of differential graded algebras with a so called logarithmic structure, and to develop examples and structural results about these new objects. Logarithmic structures on ordinary rings were originally introduced in algebraic geometry, amongst others to extend the notion of a smooth map. In recent years, the concept of a logarithmic structure was successfully generalized to structured ring spectra, where it can be used for the study of arithmetic properties.The differential graded algebras with logarithmic structures considered in this project are interesting since they provide new examples of structured ring spectra with logarithmic structures. Thus they will help to gain a better understanding of the latter objects. Moreover, in examples we would like to use logarithmic structures to analyze arithmetic properties of differential graded algebras and to obtain new results about the passage from differential graded algebras to structured ring spectra. Altogether, we expect that the mutual transfer of concepts from homotopy theory and algebraic geometry will lead to new insights about the structured ring spectra of algebraic topology and the differential graded algebras of homological algebra.
环在纯数学的许多领域中扮演着重要的角色,例如在数论中作为数环,或者在代数几何中作为几何物体的积木。有几种环的推广。其中两个在本课题中起着重要的作用:一方面,它们是同调代数的微分梯度代数,它们是由具有相容环结构的链配合物给出的。它们是同调代数的典型来源。另一方面,我们对代数拓扑结构的环谱很感兴趣。这些对象表示乘法上同调理论,并涵盖微分梯度代数作为特殊情况。在这两种情况下,我们都要求乘法是可交换的直到相干同伦。本项目的目的是寻找具有所谓对数结构的微分梯度代数的合适定义,并开发有关这些新对象的示例和结构结果。普通环上的对数结构最初是在代数几何中引入的,其中包括扩展光滑映射的概念。近年来,对数结构的概念被成功地推广到结构环谱中,它可以用于研究算术性质。本课题中考虑的具有对数结构的微分梯度代数是有趣的,因为它们提供了具有对数结构的结构环谱的新例子。因此,它们将有助于更好地理解后一个对象。此外,在实例中,我们想用对数结构来分析微分梯度代数的算术性质,并得到微分梯度代数向结构环谱过渡的新结果。总之,我们期望同伦理论和代数几何概念的相互转移将导致对代数拓扑的结构环谱和同伦代数的微分梯度代数的新见解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A strictly commutative model for the cochain algebra of a space
空间上链代数的严格交换模型
- DOI:10.1112/s0010437x20007319
- 发表时间:
- 期刊:
- 影响因子:1.8
- 作者:Birgit Richter;Steffen Sagave
- 通讯作者:Steffen Sagave
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Birgit Richter, since 5/2016其他文献
Professorin Dr. Birgit Richter, since 5/2016的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
ATD:Understanding Adversarial Examples in Neural Network: Theory and Algorithms
ATD:理解神经网络中的对抗性例子:理论和算法
- 批准号:
2318926 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Developing a 3D data-driven site characterization method and the benchmark examples
开发 3D 数据驱动的场地表征方法和基准示例
- 批准号:
23H02330 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fostering Culturally Relevant Programming Learning Experiences by Learnersourcing Contextualized Worked-Out Examples
通过学习者提供情境化的实例来培养与文化相关的编程学习体验
- 批准号:
2315683 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Intelligent Tutoring System with Examples Requiring Gap Completion for Novice Programmers
为新手程序员提供间隙补全示例的智能辅导系统
- 批准号:
570275-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Supporting Reusability of Online Code Examples
支持在线代码示例的可重用性
- 批准号:
RGPIN-2022-05114 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Examples of group cohomology
群上同调的例子
- 批准号:
580620-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Using data augmentation, active learning, and visual analytics for learning with limited examples on mobility data sets
使用数据增强、主动学习和可视化分析,通过移动数据集的有限示例进行学习
- 批准号:
DGECR-2022-00386 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
SaTC: CORE: Small: Generalizing Adversarial Examples in Natural Language
SaTC:核心:小:概括自然语言中的对抗性示例
- 批准号:
2124538 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Supporting Reusability of Online Code Examples
支持在线代码示例的可重用性
- 批准号:
DGECR-2022-00425 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Using data augmentation, active learning, and visual analytics for learning with limited examples on mobility data sets
使用数据增强、主动学习和可视化分析,通过移动数据集的有限示例进行学习
- 批准号:
RGPIN-2022-03909 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual