Operads in algebraic geometry and their realizations
代数几何中的运算及其实现
基本信息
- 批准号:269680815
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A major objective in algebraic topology is to investigate and classify topological spaces via algebraic invariants. Topological spaces which are equivalent up to deformation (homotopy) usually have the same algebraic invariants. The fundamental group, consisting of homotopy classes of based loops in a pointed topological space, is a basic such invariant. By definition, it coincides with the path components of the associated loop space, the topological space of based maps from the circle to the given space. Special properties of the circle provide these loops with a multiplication which is associative up to homotopy. In the loop space of a loop space, the multiplication is even commutative up to homotopy. Further iterations improve this multiplication, and infinite loop spaces are equivalent to connective spectra, highly structured and somewhat manageable invariants.So-called recognition principles characterize the additional structure a topological space has to possess in order to be an iterated loop space. These principles can be phrased via actions of special collections of topological spaces dubbed operads. Despite their topological origin, operads abound in algebra, geometry, and mathematical physics. Spectacular work that Morel and Voevodsky accomplished in the 90s transferred homotopical methods to the realm of algebraic geometry, whose objects of interest are rather rigid, being defined via polynomials. Connections with Grothendieck‘s vision of universal invariants (Motifs) for these algebraic varieties coined the term „motivic homotopy theory“.The major objective of this project is the investigation, construction and modification of explicit operads, closely connected to moduli spaces of algebraic curves of genus zero, in algebraic geometry. Topological realizations of various flavors will be our preferred investigation device. Only those algebraic operads whose topological realizations act on usual loop spaces will stand a chance of acting on loop spaces in motivic homotopy. These loop spaces inherit amazing complexity from an additional "circle". This circle produces certain transfer maps. Incorporating suitable transfer maps in the aforementioned algebraic operads will be one modification, as well as completion of partial operads.
代数拓扑学的一个主要目标是通过代数不变量来研究和分类拓扑空间。等价于变形(同伦)的拓扑空间通常具有相同的代数不变量。由点拓扑空间中的基环的同伦类组成的基本群是这样的基本不变量。根据定义,它与相关回路空间的路径分量重合,即从圆到给定空间的基映射的拓扑空间。圆的特殊性质为这些环提供了一个结合到同伦的乘法。在循环空间的循环空间中,乘法甚至可交换到同伦。进一步的迭代改进了这种乘法,无限循环空间等价于连通谱、高度结构化和某种程度上可管理的不变量。所谓的识别原理表征了拓扑空间必须具有的附加结构才能成为迭代循环空间。这些原则可以通过被称为歌剧的特殊拓扑空间集合的动作来表述。尽管它们起源于拓扑学,但歌剧在代数、几何和数学物理中比比皆是。Morel和Voevodsky在90年代完成的壮观工作将同伦方法转移到了代数几何领域,其感兴趣的对象是相当严格的,通过多项式来定义。与Grothendieck关于这些代数簇的万能不变量(模元)的设想相联系,产生了术语“模同伦理论”。这个项目的主要目的是研究、构造和修正代数几何中与亏格为零的代数曲线的模空间密切相关的显式算子。各种口味的拓扑实现将是我们首选的研究工具。只有那些其拓扑实现作用于通常环空间的代数算子才有可能作用于Motivic同伦中的环空间。这些循环空间从一个额外的“圈”继承了惊人的复杂性。此圆会生成特定的传递贴图。在前面提到的代数算子中结合适当的传递映射将是一种修改,也是部分算子的完成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Jens Hornbostel其他文献
Professor Dr. Jens Hornbostel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Jens Hornbostel', 18)}}的其他基金
Computations of Chow-Witt groups for split quadrics and other smooth varieties
分裂二次曲面和其他光滑簇的 Chow-Witt 群计算
- 批准号:
405438664 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Priority Programmes
Characterizations and Uniqueness of the stable motivic homotopy theory
稳定动机同伦理论的特征和独特性
- 批准号:
269515708 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Priority Programmes
Structural properties of equivariant and motivic stable homotopy categories
等变和动机稳定同伦范畴的结构性质
- 批准号:
203309416 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
- 批准号:
2349244 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
- 批准号:
2412921 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/2 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Conference: AGNES Summer School in Algebraic Geometry
会议:AGNES 代数几何暑期学校
- 批准号:
2312088 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Higher dimensional algebraic geometry
会议:高维代数几何
- 批准号:
2327037 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
- 批准号:
2234736 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant