Characterizations and Uniqueness of the stable motivic homotopy theory
稳定动机同伦理论的特征和独特性
基本信息
- 批准号:269515708
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The idea of motivic homotopy theory is to apply constructions and techniques from classical homotopy theory to solve problems in algebraic and arithmetic geometry. (A list of succesful examples is provided in section 2.2.1 of the Proposal for the DFG-Priority Program.) The key object here is the stable motivic homotopy theory SH(k) for a given base field k as invented by Morel and Voevodsky in the late 90s. Important algebraic cohomology theories such as motivic cohomology, algebraic and hermitian K-theory and algebraic cobordism are representable in SH(k). The goal of this project is to obtain a better conceptual understanding of the stable motivic homotopy category SH(k) from different points of view, that is comparing various descriptions and characterizations of it, including the question of uniqueness. In particular, we wish to study descriptions of SH(k) in terms of derivators and of infinity-categories, building upon work of Ayoub and Robalo. Moreover, we will investigate if the rigidity theorem of Schwede concerning uniqueness of models for the classical stable homotopy category allows some kind of refinement to the motivic case. An underlying theme of all these problems is the question how much of the ``higher structure'' of SH(k) is already determined by its triangulated structure, that is independent of the choosen model resp. description.
动机同伦理论的思想是应用经典同伦理论的构造和技术来解决代数和算术几何中的问题。(DFG优先计划提案第2.2.1节提供了成功实例列表。)这里的关键对象是由Morel和Voevodsky在90年代后期发明的对于给定基域k的稳定运动同伦理论SH(k)。重要的代数上同调理论,如motivic上同调,代数和埃尔米特K-理论和代数配边在SH(k)中表示。本项目的目标是从不同的角度对稳定动机同伦范畴SH(k)有一个更好的概念性理解,即比较它的各种描述和刻画,包括唯一性问题。特别是,我们希望研究SH(k)的描述的导子和无穷范畴,Ayoub和Robalo的工作的基础上。此外,我们将调查,如果刚性定理施维德关于唯一性模型的经典稳定同伦范畴允许某种细化的motivic情况。所有这些问题的一个基本主题是SH(k)的“更高结构”有多少已经由其三角结构决定的问题,这与所选择的模型无关。说明.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Jens Hornbostel其他文献
Professor Dr. Jens Hornbostel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Jens Hornbostel', 18)}}的其他基金
Computations of Chow-Witt groups for split quadrics and other smooth varieties
分裂二次曲面和其他光滑簇的 Chow-Witt 群计算
- 批准号:
405438664 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Priority Programmes
Operads in algebraic geometry and their realizations
代数几何中的运算及其实现
- 批准号:
269680815 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Priority Programmes
Structural properties of equivariant and motivic stable homotopy categories
等变和动机稳定同伦范畴的结构性质
- 批准号:
203309416 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Development of methods for determining (non-)uniqueness of deformation path and for guiding deformation of rigid origami
开发确定变形路径(非)唯一性和引导刚性折纸变形的方法
- 批准号:
23K19160 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
- 批准号:
2306258 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Analysis on resonant interactions and unconditional uniqueness for dispersive equations
色散方程的共振相互作用和无条件唯一性分析
- 批准号:
23K19019 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
- 批准号:
RGPIN-2019-05410 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Elucidation of the uniqueness, diversity, and usefulness of local citrus such as Shiikuwasha grown on the Ryukyu Islands
阐明琉球群岛种植的 Shiikuwasha 等当地柑橘的独特性、多样性和有用性
- 批准号:
22K12544 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:
2143124 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
A computational proof of existence and uniqueness for higher Airy structures
高等艾里结构的存在性和唯一性的计算证明
- 批准号:
573155-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Integrated single-cell multiomics analysis of primate brain for elucidating the molecular basis of human uniqueness
灵长类大脑的综合单细胞多组学分析,阐明人类独特性的分子基础
- 批准号:
22H02710 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
- 批准号:
RGPIN-2018-04137 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Bifurcation, Stability, and Non-uniqueness in Ideal Fluids
理想流体中的分岔、稳定性和非唯一性
- 批准号:
2205910 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant