Motivic Stack Inertia of Moduli Spaces of Curves, Variation of Periods and Multiple Zeta Values in Genus 0 and 1

属 0 和 1 中曲线模空间的动机堆栈惯性、周期变化和多个 Zeta 值

基本信息

项目摘要

The goal of this project is to study the stack inertia in the case of moduli spaces of curves from a motivic point of view. Our framework is two folds, with on one hand the Grothendieck-Teichmüller theory providing a rich and computational dual-framework with arithmetic and motivic sides; and on other hand the recent Morel-Voevodsky motivic homotopy theory adapted to Deligne-Mumford stacks providing a convenient category for the study of stack inertia. Our study is more precisely driven by applications to Multiple Zeta Values in genus one. It goes from the definition of a motivic category that takes into account the specificities of the stack structure, to the computation of new inertia relations that can be compared with the motivic stuffle-shuffle relation from genus zero.Through the two sides of Grothendieck-Teichmüller theory, this project extends and relies on very recent developments which are the consideration of stack inertia as a new key ingredient in Arithmetic Geometry, and the revival of Homotopy Theory in the foundation of Motivic theory. From the point of view of this SPP, this study can been seen as a two ways connection between classical Arithmetic Geometry and A^1-homotopy theory with new developments in both sides, and as such will certainly benefit from exchanges with other participants from the Programme.
本计画的目的是从动机的观点来研究曲线模空间情形下的堆叠惯性。我们的框架是两个折叠,一方面的Grothendieck-Teichmüller理论提供了一个丰富的和计算的双框架与算术和motivic方面;另一方面,最近Morel Voevodsky motivic同伦理论适应Deligne-Mumford堆栈提供了一个方便的类别的研究堆栈惯性。我们的研究是更精确地驱动应用程序的多个Zeta值在属一。它从考虑堆栈结构特殊性的动机范畴的定义,到可以与亏格为零的动机填充-洗牌关系相比较的新惯性关系的计算。通过Grothendieck-Teichmüller理论的两个方面,该项目扩展并依赖于最近的发展,即考虑堆栈惯性作为算术几何中的一个新的关键成分,同伦理论在动机论基础上的复兴。从这个SPP的角度来看,这项研究可以被视为经典算术几何和A^1-同伦理论之间的双向联系,双方都有新的发展,因此肯定会受益于与该计划其他参与者的交流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Benjamin Collas, Ph.D.其他文献

Dr. Benjamin Collas, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

CAREER: Rethinking System Stack for the Load-Store I/O Era
职业:重新思考加载-存储 I/O 时代的系统堆栈
  • 批准号:
    2339901
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Relaxed Semantics Across the Data Analytics Stack
整个数据分析堆栈的宽松语义
  • 批准号:
    EP/X029174/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Enabling Robust and Adaptive Architectures through a Decoupled Security-Centric Hardware/Software Stack
职业:通过解耦的以安全为中心的硬件/软件堆栈实现鲁棒性和自适应架构
  • 批准号:
    2238548
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SBIR Phase I: A Mixed-Computation Neural Network Acceleration Stack for Edge Inference
SBIR 第一阶段:用于边缘推理的混合计算神经网络加速堆栈
  • 批准号:
    2304304
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A novel mixed-reality gaming technology stack enabling the creation of unique and affordable digital-physical connected games, coupled with the prototyping of a new game IP designed to showcase its affordances.
新颖的混合现实游戏技术堆栈能够创建独特且价格实惠的数字物理连接游戏,并结合旨在展示其功能的新游戏 IP 原型设计。
  • 批准号:
    10069574
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Collaborative Research: FMitF: Track I: A Formal Verification and Implementation Stack for Programmable Logic Controllers
合作研究:FMitF:第一轨:可编程逻辑控制器的形式验证和实现堆栈
  • 批准号:
    2425711
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
  • 批准号:
    2312758
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Full-stack automation for reliable and reproducible MRS of brain cancer
全栈自动化实现可靠且可重复的脑癌 MRS
  • 批准号:
    10632895
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了