Molecular Mechanisms of the Physiological Activtiy of 3,4-Dideoxyglucosone-3-ene (3,4-DGE)

3,4-二脱氧葡萄糖酮-3-烯 (3,4-DGE) 生理活性的分子机制

基本信息

项目摘要

Glucose degradation products (GDPs) are formed to a significant extent during the thermal degradation of sugar-containing products. The most important sources of human exposure are the diet as well as drugs, which contain highly concentrated glucose solutions as osmotic agent. GDPs often contain dicarbonyl structures, thus leading to a higher chemical and physiological reactivity compared to the sugar educt. In peritoneal dialysis patients, for example, the application of dialysis fluids rich in GDPs was associated with the development of local fibrosis, vascular sclerosis and the loss of peritoneal permeability, which, in the long term, results in the discontinuation of therapy. Further studies revealed that the physiological effects of GDPs are largely related to the presence of 3,4-dideoxyglucosone-3-ene (3,4-DGE). Although 3,4-DGE is formed only in low concentrations, it shows a strikingly high cytotoxicity and enzyme inhibitory activity. Enzyme inactivation is caused in this case by GDP-induced covalent protein modifications.The aim of the present project is, therefore, to elucidate the molecular mechanisms behind the prominently strong enzyme inhibitory activity of 3,4-DGE. For this purpose, we plan to investigate in the first step to which extent the enzyme inhibitory activity is caused by a higher protein modification rate of 3,4-DGE compared to other GDPs. In the next step, the structure of the most important 3,4-DGE-derived protein modifications will be elucidated. Previous studies indicate that the unsaturated dicarbonyl structure of 3,4-DGE leads, in contrast to other GDPs or sugars, to a predominant modification of cysteine residues and, thus, to the formation of a potentially novel class of adduct structures. In the third part of the project, it will be investigated, if and why 3,4-DGE-specific modifications impair protein structure and protein conformation (and consequently also function) more severely than the previously identified modifications. For this purpose, the model enzyme RNAse A will be incubated with 3,4-DGE and the structures and binding sites of arising protein modifications will be analyzed by a combination of untargeted and targeted mass spectrometric methods. Effects of the identified modifications on the enzyme structure will be predicted by three-dimensional visualization of the tertiary structure of modified RNase as well as by molecular dynamic calculations, which will be the subject of a follow-up project. With these results in hand, it will be possible to better understand the molecular mechanisms of the prominent physiological activity of 3,4-DGE. In the long term, this knowledge will promote the development of mitigation strategies against physiological damages caused by 3,4-DGE.
在含糖产品的热降解过程中,在很大程度上形成了葡萄糖降解产物(GDP)。人体接触的最重要来源是饮食和药物,其中含有作为渗透剂的高浓度葡萄糖溶液。GDP通常含有二羰基结构,因此与糖离析物相比导致更高的化学和生理反应性。例如,在腹膜透析患者中,应用富含GDP的透析液与局部纤维化、血管硬化和腹膜通透性丧失的发展相关,从长远来看,这会导致治疗中断。进一步的研究表明,GDPs的生理效应在很大程度上与3,4-二脱氧葡萄糖酮-3-烯(3,4-DGE)的存在有关。虽然3,4-DGE仅在低浓度下形成,但它显示出惊人的高细胞毒性和酶抑制活性。在这种情况下,酶失活是由GDP诱导的共价蛋白修饰引起的,因此,本项目的目的是阐明3,4-DGE显着强酶抑制活性背后的分子机制。为此,我们计划在第一步中研究与其他GDPs相比,3,4-DGE的蛋白质修饰率更高在多大程度上导致了酶抑制活性。在下一步中,将阐明最重要的3,4-DGE衍生蛋白质修饰的结构。先前的研究表明,与其他GDP或糖相比,3,4-DGE的不饱和二羰基结构导致半胱氨酸残基的主要修饰,从而形成潜在的新型加合物结构。在该项目的第三部分中,将研究3,4-DGE特异性修饰是否以及为什么比以前确定的修饰更严重地损害蛋白质结构和蛋白质构象(从而也损害功能)。为此,将模型酶RNAse A与3,4-DGE一起孵育,并通过非靶向和靶向质谱法的组合分析所产生的蛋白质修饰的结构和结合位点。确定的修饰对酶结构的影响将通过修饰的RNase的三级结构的三维可视化以及分子动力学计算来预测,这将是后续项目的主题。有了这些结果,将有可能更好地理解3,4-DGE突出生理活性的分子机制。从长远来看,这些知识将促进针对3,4-DGE引起的生理损害的缓解策略的发展。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Monika Pischetsrieder其他文献

Professorin Dr. Monika Pischetsrieder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Monika Pischetsrieder', 18)}}的其他基金

Analyse von Proteinmodifikationen in erhitzten Milchprodukten mittels MALDI-TOF-MS
使用 MALDI-TOF-MS 分析加热乳制品中的蛋白质修饰
  • 批准号:
    18140607
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Strukturaufklärung und funktionelle Charakterisierung von signalaktiven Maillard-Reaktionsprodukten
信号活性美拉德反应产物的结构解析和功能表征
  • 批准号:
    5425954
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Physiological and molecular mechanisms of impaired PV circuit homeostasis in Autism mouse models
自闭症小鼠模型中PV电路稳态受损的生理和分子机制
  • 批准号:
    10569470
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Molecular and physiological mechanisms to mitigate drought and temperature stress in conifers
缓解针叶树干旱和温度胁迫的分子和生理机制
  • 批准号:
    559137-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Physiological and Molecular Mechanisms of Developmental Plasticity
发育可塑性的生理和分子机制
  • 批准号:
    547288-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Physiological and Molecular Mechanisms of Developmental Plasticity
发育可塑性的生理和分子机制
  • 批准号:
    547288-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Molecular basis for generation of the diversity of bacterial membrane phospholipid acyl chains and mechanisms underlying their physiological functions
细菌膜磷脂酰基链多样性产生的分子基础及其生理功能机制
  • 批准号:
    21H02102
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Assessing the physiological relevance and molecular mechanisms of non-canonical ubiquitylation
评估非典型泛素化的生理相关性和分子机制
  • 批准号:
    MR/V025759/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Deciphering the molecular mechanisms and physiological consequences of macrophage polarisation during Salmonella infection
破译沙门氏菌感染期间巨噬细胞极化的分子机制和生理后果
  • 批准号:
    MR/V031058/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Molecular and physiological mechanisms to mitigate drought and temperature stress in conifers
缓解针叶树干旱和温度胁迫的分子和生理机制
  • 批准号:
    559137-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Physiological and Molecular Mechanisms of Mu Opioid Receptors in Motivation and Affect
Mu阿片受体在动机和情感中的生理和分子机制
  • 批准号:
    10533991
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Molecular and Physiological Mechanisms of Hypertensive Cerebral Microangiopathy
高血压脑微血管病的分子和生理机制
  • 批准号:
    10631211
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了