Correlation effects in one- and two-dimensional electron systems in and out of equilibrium
一维和二维电子系统平衡和非平衡的相关效应
基本信息
- 批准号:271732007
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Independent Junior Research Groups
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Low-dimensional electron systems govern the behavior of strongly anisotropic materials (such as the iron pnictides), of graphene, or of quantum dots and wires. 1d or 2d fermions or bosons can also be realized in cold atom setups where elementary equilibrium or real time physics can be probed accurately. Thus, understanding low-dimensional systems is important both fundamentally and for applications in nanoelectronics or the design of functional materials. However, Coulomb interactions lead to a variety of many-body phenomena that cannot be obtained by using simple perturbation theory. It is particularly challenging to treat systems out of thermal equilibrium. The goal of my research project is two-fold: a) I want to develop novel methods with which one can describe correlation effects on real-time, non-equilibrium dynamics. b) I want to use these methods as well as a variety of existing ones to study numerous properties of interacting 1d and 2d systems. My particular aim is to approach a given problem simultaneously from complementary angles by using different semi-analytical as well as computational techniques which each have their own strengths and limitations.One project is to calculate linear-response dynamic correlation functions of 1d systems such as the momentum- and frequency-resolved density of states (which can be measured using photoemission) or optical charge, spin, and heat conductivities. In particular, a) I will try to confirm a recent, fundamental conjecture about deviations from the conventional low-energy 'Luttinger liquid' theory, b) I want to address models relevant for actual experimental setups (e.g., the extended Hubbard model) at finite temperature, c) I will study true long-range interactions.A second project is to develop and implement techniques with which one can simulate the out-of-equilibrium time evolution of correlated systems in 2d. This is largely uncharted territory, so I will first explore the capabilities of the individual methods. Thereafter, I will study prototypical questions: How do elementary excitations propagate? Are there interaction effects in non-equilibrium that can be tested in a cold atom experiment? Can we compute diffusion constants? Do thermodynamic quantities (imaginary time evolution) provide insights about different ordered phases? Can real-time dynamics be used to compute correlation functions in 2d?My third goal is to investigate the interplay of interactions and disorder in 1d and 2d systems. This issue of a 'many-body version' of Anderson localization is newly emerging. I will try to compute experimentally-accessible features of the metallic and insulating phases as well as properties of the 'dynamical quantum phase transition' which separates them and which supposedly differs fundamentally from the conventional Anderson metal-insulator transition.In collaboration with my colleagues at the FU Berlin, I will study the effects of correlations in topological systems.
低维电子系统控制着强各向异性材料(如铁磷属元素化物)、石墨烯或量子点和量子线的行为。1D或2D费米子或玻色子也可以在冷原子装置中实现,其中可以精确地探测基本平衡或真实的时间物理。因此,了解低维系统是很重要的基础和应用在纳米电子学或功能材料的设计。然而,库仑相互作用导致的各种多体现象,不能得到使用简单的微扰理论。特别具有挑战性的是处理热平衡的系统。我的研究项目的目标是双重的:a)我想开发新的方法,可以描述实时,非平衡动力学的相关效应。B)我想用这些方法以及各种现有的方法来研究相互作用的一维和二维系统的许多性质。我的特别目标是同时从互补的角度来处理一个给定的问题,通过使用不同的半解析以及计算技术,每一个都有自己的优势和局限性。一个项目是计算线性响应动态相关函数的一维系统,如动量和频率分辨的态密度(可以使用光电发射测量)或光学电荷,自旋和热导率。特别是,a)我将试图证实最近的一个关于偏离传统低能“Luttinger液体”理论的基本猜想,B)我想解决与实际实验设置相关的模型(例如,扩展的哈伯德模型)在有限温度下,c)我将研究真正的长程相互作用。第二个项目是开发和实现技术,用它可以模拟二维相关系统的非平衡时间演化。这在很大程度上是未知领域,因此我将首先探索各个方法的功能。此后,我将研究原型问题:基本激发如何传播?在非平衡态中是否存在可以在冷原子实验中检验的相互作用效应?我们能计算扩散常数吗?热力学量(虚时间演化)是否提供了关于不同有序相的见解?实时动力学可以用来计算二维相关函数吗?我的第三个目标是研究1d和2d系统中相互作用和无序的相互作用。这个问题的“多体版本”的安德森本地化是新出现的。我将尝试计算实验上可获得的特征的金属和绝缘阶段,以及性质的“动态量子相变”,其中分离他们,这应该是根本上不同于传统的安德森金属绝缘体transition.In合作,我的同事在FU柏林,我将研究的影响,相关性的拓扑系统。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transport in quasiperiodic interacting systems: From superdiffusion to subdiffusion
- DOI:10.1209/0295-5075/119/37003
- 发表时间:2017-08-01
- 期刊:
- 影响因子:1.8
- 作者:Bar Lev, Yevgeny;Kennes, Dante M.;Karrasch, Christoph
- 通讯作者:Karrasch, Christoph
Entanglement scaling of excited states in large one-dimensional many-body localized systems
- DOI:10.1103/physrevb.93.245129
- 发表时间:2015-11
- 期刊:
- 影响因子:3.7
- 作者:D. Kennes;C. Karrasch
- 通讯作者:D. Kennes;C. Karrasch
Second-order functional renormalization group approach to one-dimensional systems in real and momentum space
实空间和动量空间中一维系统的二阶函数重整化群方法
- DOI:10.1103/physrevb.96.235122
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:B. Sbierski;C. Karrasch
- 通讯作者:C. Karrasch
Nonequilibrium Properties of Berezinskii-Kosterlitz-Thouless Phase Transitions.
Berezinskii-Kosterlitz-Thouless 相变的非平衡性质
- DOI:10.1103/physrevlett.125.147601
- 发表时间:2020
- 期刊:
- 影响因子:8.6
- 作者:C. Klöckner;C. Karrasch;D. M. Kennes
- 通讯作者:D. M. Kennes
Phases of translation-invariant systems out of equilibrium: iterative Green’s function techniques and renormalization group approaches
平移不变系统失去平衡的阶段:迭代格林函数技术和重正化群方法
- DOI:10.1088/1367-2630/ab990d
- 发表时间:2020
- 期刊:
- 影响因子:3.3
- 作者:C. Klöckner;D. M. Kennes;C. Karrasch
- 通讯作者:C. Karrasch
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christoph Karrasch其他文献
Professor Dr. Christoph Karrasch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christoph Karrasch', 18)}}的其他基金
Correlations and impurities in topological insulators
拓扑绝缘体中的相关性和杂质
- 批准号:
193069739 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Fellowships
Hybrid Approach to Non-Equilibrium Control Over Phases of Matter
物质相非平衡控制的混合方法
- 批准号:
508440990 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
NPM1表观重塑巨噬细胞代谢及修复表型在心肌缺血损伤中的调控作用
- 批准号:82371825
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
内源性蛋白酶抑制剂SerpinA3N对缺血性脑卒中后血脑屏障的保护作用及其表达调控机制
- 批准号:82371317
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
- 批准号:21477024
- 批准年份:2014
- 资助金额:86.0 万元
- 项目类别:面上项目
动态整体面孔认知加工的认知机制的研究
- 批准号:31070908
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
磁性隧道结的势垒及电极无序效应的研究
- 批准号:10874076
- 批准年份:2008
- 资助金额:34.0 万元
- 项目类别:面上项目
抗抑郁剂调控细胞骨架蛋白的功能研究
- 批准号:30472018
- 批准年份:2004
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Effects of Nicotine Concentration Levels in E-cigarettes on Biomarkers of Exposure to Toxicants and Tobacco Use Behaviors
电子烟中尼古丁浓度水平对有毒物质暴露和烟草使用行为生物标志物的影响
- 批准号:
10678555 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Extension and demonstration of two-particle-level computational theory based on dimensionality reduction to nonlocal electron correlation effects
基于降维非局域电子相关效应的双粒子级计算理论的推广与论证
- 批准号:
22KK0226 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Cognitive strategy training in Post-COVID-19 Syndrome: A feasibility trial.
COVID-19 后综合症的认知策略培训:可行性试验。
- 批准号:
10712171 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Effects of 16p11.2 copy number variation on neuronal development and pathology
16p11.2 拷贝数变异对神经元发育和病理学的影响
- 批准号:
10659523 - 财政年份:2023
- 资助金额:
-- - 项目类别:
NIH Plunk The Effects of Gestational and Lactational Exposure to Perfluorohexanoic Acid on Cerebellum Development in the Mouse
美国国立卫生研究院 (NIH) 确定妊娠期和哺乳期接触全氟己酸对小鼠小脑发育的影响
- 批准号:
10747709 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The short-term economic impact of Peru's internal conflict: A fixed effects two sector approach.
秘鲁内部冲突的短期经济影响:固定效应两部门方法。
- 批准号:
2869120 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Combined Biomarker and EMR Data for Heterogeneous Treatment Effects and Surrogate Endpoints in Sepsis
脓毒症异质治疗效果和替代终点的生物标志物和 EMR 数据相结合
- 批准号:
10603924 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigating the effects of olfactory critical period odorant exposure on the trace amine-associated receptor4 olfactory circuit
研究嗅觉关键期气味暴露对痕量胺相关受体4嗅觉回路的影响
- 批准号:
10749403 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A prospective clinical trial of immunosuppression reduction in recipients of low eplet mismatched renal allografts: the kidney for life initiative
低 eplet 错配肾同种异体移植受者减少免疫抑制的前瞻性临床试验:肾脏生命倡议
- 批准号:
10704807 - 财政年份:2023
- 资助金额:
-- - 项目类别: