Line bundles on noncommutative algebraic and arithmetic surfaces
非交换代数和算术曲面上的线丛
基本信息
- 批准号:272768204
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We want to study noncommutative algebraic and arithmetic surfaces and line bundles on these surfaces. In this situation these noncommutative surfaces are given by Azumaya algebras. In the algebraic case these surfaces are noncommutative analogs of classical geometric objects, for example K3 surfaces. They have similar properties like their classical commutative counterparts. For example the line bundles on these surfaces are also classified by a projective moduli scheme. This scheme corresponds to the classical Picard scheme. We want to study miscellaneous properties of these surfaces and their moduli schemes. For example we want to understand the Serre duality on these noncommutative surfaces. This helps to understand the smoothness properties and the deformation theory of the moduli spaces. Furthermore we want to study the symplectic structure of these moduli spaces in certain situations. In the arithmetic situation we want to study the noncommutative surfaces and line bundles by using Arakelov geometry. Arakelov geometry is a mix of classical algebraic geometry and complex differential geometry. One of the main questions here is, how to generalize the Arakelov intersection product to the noncommutative situation. Another question is, if we can assign some meaning to the torsion in the cohomology groups.
我们要研究非交换的代数和算术曲面以及这些曲面上的线丛。在这种情况下,这些非交换曲面由Azumaya代数给出。在代数的情况下,这些曲面是经典几何对象的非交换类似物,例如K3曲面。它们具有与经典交换对应物相似的性质。例如,这些表面上的线丛也被分类的投射模计划。该方案对应于经典的Picard方案。我们想研究这些曲面的各种性质和它们的模方案。例如,我们想理解这些非对易曲面上的塞尔对偶。这有助于理解模空间的光滑性和变形理论。此外,我们想研究这些模空间在某些情况下的辛结构。在算术情形中,我们想用阿拉克洛夫几何来研究非对易曲面和线丛。阿拉克洛夫几何是古典代数几何和复微分几何的混合。这里的一个主要问题是,如何将Arakelov交积推广到非交换的情况。另一个问题是,如果我们能给上同调群中的挠赋予某种意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Fabian Reede其他文献
Dr. Fabian Reede的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
系数在局部常层中的上同调理论及其到代数几何的应用
- 批准号:10471105
- 批准年份:2004
- 资助金额:17.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
- 批准号:
2337451 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
- 批准号:
2340481 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Studies on canonical bundles of algebraic varieties
代数簇的正则丛研究
- 批准号:
23H01064 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Topology of Kaehler Manifolds, Surface Bundles, and Outer Automorphism Groups
凯勒流形、表面丛和外自同构群的拓扑
- 批准号:
2401403 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ERI: RUI: Wavefront shaping through flexible multicore fiber bundles for coherent light focusing and imaging in neurophotonics
ERI:RUI:通过灵活的多芯光纤束进行波前整形,用于神经光子学中的相干光聚焦和成像
- 批准号:
2302023 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Study for growth process of nano-tendril bundles by helium plasma exposure with impurity gases
氦等离子体与杂质气体暴露纳米卷须束生长过程的研究
- 批准号:
23K13083 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Moduli Spaces and Vector Bundles, New trends
模空间和向量丛,新趋势
- 批准号:
2203287 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Moduli Spaces of Higgs Bundles, Gauge Theory, and Related Topics
希格斯丛集的模空间、规范理论及相关主题
- 批准号:
2204346 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant