Tensor-Based Adaptive Deconvolution for Multi-Shell Diffusion MRI
基于张量的多壳扩散 MRI 自适应反卷积
基本信息
- 批准号:273590161
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Diffusion weighted Magnetic Resonance Imaging (dMRI) is widely used for noninvasive investigation of the human brain, both in neuroscience and in the clinic. Recently, it has become common to acquire multi-shell diffusion MR data, which involves multiple levels of diffusion weighting. We propose a research agenda that will lead to a mathematically well-founded and efficient framework for deriving novel quantitative parameters from such data. These parameters can be interpreted in terms of the tissue microstructure, even in regions of nerve fiber crossings or spread.The planned scientific contribution is threefold: Our first goal is to extend an existing model, which expresses the deconvolution of single-shell diffusion MR data in the mathematical language of higher-order tensors, to the more complex multi-shell data. We will closely collaborate with a partner from applied mathematics to ensure formal well-posedness of this approach. We also expect this approach to lead to a more stringent regularization of the deconvolution itself, which will make it more robust against measurement noise and errors.The second goal addresses the deconvolution kernel, which is an important calibration parameter of all deconvolution models, and commonly assumed to be constant throughout the brain. We have recently proposed an adaptive deconvolution approach that allows the kernel to vary spatially. In collaboration with a clinical partner, we have found that, in the presence of neurodegenerative disease, adapting the kernel is essential in regions affected by the disease. We will significantly extend this framework to make use of the tensor-based deconvolution developed in the first part, to increase robustness by including spatial regularization, and to allow for the increased number of kernel parameters in the multi-shell case. The resulting method will allow for an arbitrary distribution of nerve fiber directions within a voxel. At the same time, it will yield novel quantitative measures of tissue microstructure that can contribute to a more detailed understanding of disease or changes associated with learning.Finally, it is our third goal to establish a measurement protocol that will allow reliable estimation of our model with minimum requirements in terms of the required measurement time. We aim for a protocol that requires less than 15~minutes of scan time for a full-brain analysis, which would make our method suitable not just for applications within neuroscience, but even clinically. To achieve this, we will exploit recent works on the use of compressive sensing in diffusion MRI.
扩散加权磁共振成像(DMRI)广泛应用于神经科学和临床的无创性人脑研究。最近,获取多层扩散磁共振数据变得很常见,这涉及到多个级别的扩散加权。我们提出了一个研究议程,它将导致一个数学上有充分基础和有效的框架,从这些数据中得出新的定量参数。这些参数可以根据组织的微观结构来解释,甚至在神经纤维交叉或扩散的区域也是如此。计划的科学贡献有三个:我们的第一个目标是将现有的模型扩展到更复杂的多壳数据,该模型用高阶张量的数学语言来表示单壳扩散磁共振数据的反卷积。我们将与应用数学的合作伙伴密切合作,以确保这种方法在形式上是正确的。我们还期望这种方法将导致对反卷积本身进行更严格的正则化,这将使其对测量噪声和误差具有更强的鲁棒性。第二个目标涉及反卷积核,这是所有反卷积模型的重要校准参数,通常假设在整个大脑中是恒定的。我们最近提出了一种自适应去卷积方法,允许内核在空间上变化。在与一位临床合作伙伴的合作中,我们发现,在存在神经退行性疾病的情况下,调整内核在受疾病影响的区域是必不可少的。我们将大大扩展这一框架,以利用在第一部分中开发的基于张量的反卷积,通过包括空间正则化来增加稳健性,并允许在多壳情况下增加核参数的数量。由此产生的方法将允许在体素内任意分布神经纤维方向。同时,它将产生新的组织微观结构的定量测量,有助于更详细地了解疾病或与学习相关的变化。最后,我们的第三个目标是建立一种测量方案,允许在所需测量时间方面以最低要求可靠地估计我们的模型。我们的目标是一种扫描时间不到15分钟的全脑分析方案,这将使我们的方法不仅适用于神经科学领域,甚至适用于临床。为了实现这一点,我们将利用最近关于在扩散磁共振成像中使用压缩传感的工作。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Iteratively reweighted L1-fitting for model-independent outlier removal and regularization in diffusion MRI
- DOI:10.1109/isbi.2016.7493413
- 发表时间:2016-04
- 期刊:
- 影响因子:0
- 作者:A. Tobisch;T. Stöcker;S. Groeschel;T. Schultz
- 通讯作者:A. Tobisch;T. Stöcker;S. Groeschel;T. Schultz
Versatile, robust, and efficient tractography with constrained higher-order tensor fODFs
- DOI:10.1007/s11548-017-1593-6
- 发表时间:2017-08-01
- 期刊:
- 影响因子:3
- 作者:Ankele, Michael;Lim, Lek-Heng;Schultz, Thomas
- 通讯作者:Schultz, Thomas
BundleMAP: Anatomically localized classification, regression, and hypothesis testing in diffusion MRI
- DOI:10.1016/j.patcog.2016.09.020
- 发表时间:2017-03
- 期刊:
- 影响因子:0
- 作者:Mohammad Khatami;T. Schmidt-Wilcke;P. Sundgren;Amin Abbasloo;B. Scholkopf;T. Schultz
- 通讯作者:Mohammad Khatami;T. Schmidt-Wilcke;P. Sundgren;Amin Abbasloo;B. Scholkopf;T. Schultz
DT-MRI Streamsurfaces Revisited
- DOI:10.1109/tvcg.2018.2864845
- 发表时间:2019-01
- 期刊:
- 影响因子:5.2
- 作者:Michael Ankele;T. Schultz
- 通讯作者:Michael Ankele;T. Schultz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Thomas Schultz其他文献
Professor Dr.-Ing. Thomas Schultz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Thomas Schultz', 18)}}的其他基金
Visualizing Propagator-Based Diffusion Imaging Data
可视化基于传播器的扩散成像数据
- 批准号:
422414649 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
- 批准号:81900115
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
Reality-based Interaction用户界面模型和评估方法研究
- 批准号:61170182
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
- 批准号:30470665
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
- 批准号:60376005
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
- 批准号:
24K07389 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
- 批准号:
2327266 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Risk-Based Methods for Robust, Adaptive, and Equitable Flood Risk Management in a Changing Climate
职业:在气候变化中实现稳健、适应性和公平的洪水风险管理的基于风险的方法
- 批准号:
2238060 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Emergent Functional Chemistry Based on External-Field-Adaptive Molecular Lattices
基于外场自适应分子晶格的新兴功能化学
- 批准号:
23H01978 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Evaluating social interventions to reduce health inequities using an adaptive platform trial situated in Canadian primary care practice-based research networks
使用加拿大初级保健实践研究网络中的适应性平台试验评估社会干预措施,以减少健康不平等
- 批准号:
481607 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Creation of a curved cilia mechanism based on oviduct-like elastic oscillations that realizes super-adaptive propulsion into lumens with various shapes
创建基于类输卵管弹性振荡的弯曲纤毛机制,实现对各种形状管腔的超自适应推进
- 批准号:
23K17736 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Designing Bayesian based Adaptive Resource Constrained Hardware Algorithms for Next Generation of Embedded Systems
为下一代嵌入式系统设计基于贝叶斯的自适应资源受限硬件算法
- 批准号:
2890421 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




