Regularization and discretization of inverse problems for PDEs in Banach spaces

Banach 空间中偏微分方程反问题的正则化和离散化

基本信息

项目摘要

The aim of this project is a combined analysis of regularization and discretization of ill-posed problems in Banach spaces specifically in the context of partial differential equations. Such problems play a crucial role in numerous applications ranging from medical imaging via nondestructive testing to geophysical prospecting, with the Banach space setting mandated by the inherent regularity of the sought coefficients as well as structural features such as sparsity. Our goal is to fill the gap between the existing abstract regularization theory in general Banach spaces and the adaptive discretization of well-posed optimization problems in Hilbert spaces with pointwise constraints to derive explicit source conditions and practical parameter choice rules and to develop adaptive discretization methods based on functional and goal-oriented error estimates that take into account the interdependence of regularization parameter, data noise level and discretization error. This will lead to an integrated approach for the stable and efficient numerical solution method of parameter identification problems in Banach spaces.
这个项目的目的是在Banach空间中,特别是在偏微分方程的背景下,正则化和不适定问题的离散化的组合分析。这些问题在许多应用中起着至关重要的作用,从医学成像,通过无损检测地球物理勘探,与巴拿赫空间设置所要求的固有规律性的寻求系数以及结构特征,如稀疏性。我们的目标是填补一般Banach空间中现有的抽象正则化理论与Hilbert空间中具有逐点约束的适定优化问题的自适应离散化之间的差距,以导出显式源条件和实用的参数选择规则,并发展基于泛函和目标导向误差估计的自适应离散化方法,该方法考虑了正则化参数的相互依赖性,数据噪声水平和离散化误差。这将导致一个完整的方法,稳定和有效的数值求解方法的参数识别问题在Banach空间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Christian Clason其他文献

Professor Dr. Christian Clason的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Christian Clason', 18)}}的其他基金

Parameter identification in models with sharp phase transitions
具有急剧相变的模型中的参数识别
  • 批准号:
    313878693
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

High Order Schemes: Bound Preserving, Moving Boundary, Stochastic Effects and Efficient Time Discretization
高阶方案:保界、移动边界、随机效应和高效时间离散化
  • 批准号:
    2309249
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analysis of geometric discretization methods
几何离散化方法分析
  • 批准号:
    RGPIN-2020-04389
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Discretization of molecular liquid dynamics
分子液体动力学的离散化
  • 批准号:
    22K03553
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
  • 批准号:
    RGPIN-2020-03909
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of geometric discretization methods
几何离散化方法分析
  • 批准号:
    RGPIN-2020-04389
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
  • 批准号:
    RGPIN-2020-03909
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Robust Least Squares Discretization for Mixed Variational Formulations
混合变分公式的稳健最小二乘离散化
  • 批准号:
    2011615
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical and Numerical Analysis of Asymptotically Compatible Discretization of Nonlocal Models
非局部模型渐近兼容离散化的数学和数值分析
  • 批准号:
    2012562
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of analysis and discretization in differential geometry
微分几何分析和离散化的发展
  • 批准号:
    20K03585
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discretization of an Improper System with a Descriptor System and its Application to Control System Design
描述子系统的不适定系统离散化及其在控制系统设计中的应用
  • 批准号:
    20K14759
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了