High Order Schemes: Bound Preserving, Moving Boundary, Stochastic Effects and Efficient Time Discretization

高阶方案:保界、移动边界、随机效应和高效时间离散化

基本信息

  • 批准号:
    2309249
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

The project aims to develop efficient and high-precision numerical methods for solving partial differential equations in various important scientific and engineering applications, such as aerospace engineering, semiconductor device design, astrophysics, and biological applications. Even with today's fast supercomputers, it is still essential to design efficient and reliable algorithms to obtain accurate solutions to these applications where high precision can improve the safety and performance of those devices. These algorithms will make positive contributions to computer simulations of the complicated solution structure in these applications. The project will include workforce development for students from underrepresented groups in STEM.The project aims to investigate algorithm development, analysis, and application of high-order numerical methods, including discontinuous Galerkin (DG) finite element methods and finite difference and finite volume weighted essentially non-oscillatory (WENO) schemes. The algorithms will be designed to solve linear and nonlinear convection-dominated partial differential equations (PDEs), emphasizing bound preserving, moving boundary, stochastic effects and efficient time discretization. Topics of the research investigations will include an inverse Lax-Wendroff procedure for numerical boundary conditions with moving boundaries and interfaces, mathematical properties and efficient solvers for forward-backward coupled PDE systems from traffic flow modeling, high order numerical methods for hysteretic flows, robust high order Lagrangian methods, efficient and stable time-stepping techniques for DG schemes and other spatial discretizations, high order accurate bound-preserving schemes and applications including problems involving highly nonlinear constraints and one step Lax-Wendroff type time discretizations, problems with stiff source terms, high order DG schemes for stationary hyperbolic equations and radiative transfer equations, oscillation-free DG methods, and numerical solutions of stochastic differential equations. The research will provide guidelines for the algorithms' applicability and limitations while enhancing their accuracy, stability, and robustness. The research will include collaborations with engineers and other applied scientists to enable the efficient application of these new algorithms or new features in existing algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发高效和高精度的数值方法,用于解决各种重要科学和工程应用中的偏微分方程,如航空航天工程,半导体器件设计,天体物理学和生物学应用。即使有了当今快速的超级计算机,设计高效可靠的算法仍然至关重要,以获得这些应用的精确解决方案,其中高精度可以提高这些设备的安全性和性能。这些算法将为这些应用中复杂解结构的计算机模拟做出积极的贡献。该项目将包括STEM中代表性不足的学生的劳动力发展。该项目旨在研究高阶数值方法的算法开发,分析和应用,包括间断Galerkin(DG)有限元方法和有限差分和有限体积加权基本无振荡(韦诺)格式。这些算法将被设计用于求解线性和非线性对流占优偏微分方程(PDE),强调边界保持,移动边界,随机效应和有效的时间离散化。研究调查的主题将包括移动边界和界面的数值边界条件的逆Lax-Wendroff程序,交通流建模的前后耦合PDE系统的数学特性和有效求解器,滞后流的高阶数值方法,鲁棒高阶拉格朗日方法,DG计划和其他空间离散的有效和稳定的时间步长技术,高阶精度保界格式及其应用,包括高度非线性约束和一步Lax-Wendroff型时间离散问题,刚性源项问题,定常双曲方程和辐射传输方程的高阶DG格式,无振荡DG方法,以及随机微分方程的数值解。该研究将为算法的适用性和局限性提供指导,同时提高其准确性,稳定性和鲁棒性。该研究将包括与工程师和其他应用科学家的合作,以使这些新算法或现有算法中的新功能得到有效应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High order conservative Lagrangian scheme for three-temperature radiation hydrodynamics
  • DOI:
    10.1016/j.jcp.2023.112595
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juan Cheng;Chi-Wang Shu
  • 通讯作者:
    Juan Cheng;Chi-Wang Shu
Approximated decompositions for computational continuum mechanics
  • DOI:
    10.1016/j.jcp.2023.112576
  • 发表时间:
    2023-10-23
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Borges,Rafael B. deR.;Colman,Flavio C.;Shu,Chi-Wang
  • 通讯作者:
    Shu,Chi-Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chi-Wang Shu其他文献

Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes
用加权紧致非线性格式改进欧拉方程稳态解的收敛性
  • DOI:
    10.1007/s10255-013-0230-6
  • 发表时间:
    2013-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuhai Zhang, Meiliang Mao;Chi-Wang Shu
  • 通讯作者:
    Chi-Wang Shu
Stability of high order finite difference schemes with implicit-explicit time-marching for convection-diffusion and convection-dispersion equations
对流扩散和对流色散方程隐式-显式时间推进高阶有限差分格式的稳定性
A high order positivity-preserving polynomial projection remapping method
一种高阶保正多项式投影重映射方法
  • DOI:
    10.1016/j.jcp.2022.111826
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Nuo Lei;Juan Cheng;Chi-Wang Shu
  • 通讯作者:
    Chi-Wang Shu
Optimal error estimates to smooth solutions of the central discontinuous Galerkin methods for nonlinear scalar conservation laws
Numerical experiments on the accuracy of ENO and modified ENO schemes

Chi-Wang Shu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chi-Wang Shu', 18)}}的其他基金

High Order Schemes: Robustness, Efficiency, and Stochastic Effects
高阶方案:鲁棒性、效率和随机效应
  • 批准号:
    2010107
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Algorithm Development, Analysis, and Application of High Order Schemes
高阶方案的算法开发、分析与应用
  • 批准号:
    1719410
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
High Order Schemes for Hyperbolic and Convection-dominated Problems
双曲和对流主导问题的高阶方案
  • 批准号:
    1418750
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Algorithm Design and Analysis for High Order Numerical Methods
高阶数值方法的算法设计与分析
  • 批准号:
    1112700
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SCREMS: High order numerical algorithms and their applications
SCEMS:高阶数值算法及其应用
  • 批准号:
    0922803
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
International Conference on Advances in Scientific Computing; December 2009; Providence, RI
国际科学计算进展会议;
  • 批准号:
    0940863
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Efficient High Order Numerical Methods for Convection Dominated Partial Differential
对流主导偏微分的高效高阶数值方法
  • 批准号:
    0809086
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: High Order Accurate Weighted Essentially Non-Oscillatory Algorithms with Applications to Cosmological Hydrodynamic Simulations
合作研究:高阶精确加权本质非振荡算法及其在宇宙流体动力学模拟中的应用
  • 批准号:
    0506734
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
High Order Numerical Methods for Wave Phenomena in Adaptive, Multiscale and Uncertain Environments
自适应、多尺度和不确定环境中波动现象的高阶数值方法
  • 批准号:
    0510345
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
High Order Methods for Linear and Nonlinear Waves
线性和非线性波的高阶方法
  • 批准号:
    0207451
  • 财政年份:
    2002
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Mathematical analyses on one-bit secret sharing schemes and their extensions
一位秘密共享方案及其扩展的数学分析
  • 批准号:
    23K10979
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The influence of fungal networks on the success of tree-planting schemes
真菌网络对植树计划成功的影响
  • 批准号:
    2898803
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Construction of Post-quantum Signature Schemes based on Lattices
基于格的后量子签名方案构建
  • 批准号:
    EP/X036669/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
  • 批准号:
    2310746
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
  • 批准号:
    2302072
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Research on Cryptographic Schemes with Probabilistically Decryptable Encryption Scheme
概率可解密加密方案的密码方案研究
  • 批准号:
    23K19952
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Fundamentals and applications of tropical schemes
热带计划的基础和应用
  • 批准号:
    EP/X02752X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Fellowship
Advanced inertial confinement fusion schemes
先进的惯性约束聚变方案
  • 批准号:
    2887053
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
  • 批准号:
    2309748
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了