Analysis of geometric discretization methods

几何离散化方法分析

基本信息

  • 批准号:
    RGPIN-2020-04389
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The theme of the proposed project is the theoretical understanding of compatible discretization techniques for geometric partial differential equations. More specifically, my interests are in discretization methods that inherit fundamental geometric and topological properties of the underlying differential equation. My long term goals are to help invent discretization methods for the Einstein field equations with nice geometric properties, and to make contributions to the design and analysis of lattice quantum chromodynamics. Within the framework of this project, we would like to investigate convergence properties of discrete exterior calculus (DEC). DEC is a framework for constructing discrete versions of exterior differential calculus objects, and is widely used in computer graphics and scientific computing. However, a rigorous convergence analysis of DEC has always been lacking. Recently, the applicant and his student proved that DEC solutions to the Poisson problem in arbitrary dimensions converge. We plan to study convergence for general k-forms. This is a short term goal that can be accomplished in 2-3 years by a PhD student. The analogue of DEC for the Yang-Mills equations is the so called lattice gauge theories, whose quantum version include lattice quantum chromodynamics. Thus, a good understanding of DEC will certainly give insights into lattice gauge theories. Making use of this connection, I plan to study convergence properties of (classical) lattice gauge theory for the Yang-Mills equations. The analogue of DEC for the Einstein equations is the so called Regge calculus. Very recently, the Regge discretization of the Einstein field equations has been found to be numerically unstable. We would like to extend the Regge calculus to general tessellations including quadrilaterals, prisms, etc, instead of only triangles. Our hope is that this would alleviate the aforementioned instability. The projects described in the last 2 paragraphs are open-ended long term projects. The second subset is on finite element exterior calculus (FEEC). This is a theoretical framework to handle mixed finite element type discretizations of abstract Hilbert complexes, together with a growing body of theory on concrete realizations. The first project I want to work on in this direction is to develop an Lp-theory of FEEC. This is a well-defined question with known methodologies and I expect to have concrete results in 1-2 years. An important pending issue here is adaptivity. The biggest obstacle in this direction has been that the so called quasi-orthogonality property (which is a generalization of Galerkin orthogonality) is hard to establish in the mixed finite element setting. However, very recently, this problem has been solved in the context of the Stokes problem. We hope to adapt their techniques into the FEEC setting. This project is technically challenging, but not so much open ended, as general ideas on its resolution are just beginning to emerge.
拟议项目的主题是几何偏微分方程相容离散技术的理论理解。更具体地说,我的兴趣是在离散化方法,继承基本的几何和拓扑性质的基本微分方程。我的长期目标是帮助发明具有良好几何性质的爱因斯坦场方程的离散方法,并为晶格量子色动力学的设计和分析做出贡献。在这个项目的框架内,我们想研究离散外部演算(DEC)的收敛性质。DEC是一种构造外部微分对象离散版本的框架,广泛应用于计算机图形学和科学计算。然而,严格的收敛性分析DEC一直缺乏。最近,申请人和他的学生证明了任意维泊松问题的DEC解收敛。我们计划研究一般k-形式的收敛性。这是一个短期目标,可以在2-3年内完成的博士生。杨-米尔斯方程的DEC的类似物是所谓的格点规范理论,其量子版本包括格点量子色动力学。因此,一个好的理解DEC肯定会给深入了解格点规范理论。利用这种联系,我计划研究杨-米尔斯方程的(经典)格点规范理论的收敛性质。爱因斯坦方程的DEC的类似物是所谓的Regge演算。最近,爱因斯坦场方程的Regge离散被发现是数值不稳定的。我们希望将Regge演算扩展到一般的镶嵌,包括四边形,棱柱等,而不仅仅是三角形。我们希望这将缓解上述不稳定。最后两段所述的项目是无限期的长期项目。第二个子集是有限元外演算(FEEC)。这是一个理论框架来处理抽象希尔伯特复形的混合有限元类型离散化,以及越来越多的具体实现理论。我想在这个方向上做的第一个项目是开发FEEC的LP理论。这是一个定义明确的问题,有已知的方法,我希望在1-2年内有具体的结果。一个重要的未决问题是适应性。在这个方向上的最大障碍是,所谓的准正交性(这是一个推广的伽辽金正交性)是很难建立在混合有限元设置。然而,最近,这个问题已经在斯托克斯问题的背景下得到解决。我们希望将他们的技术应用到FEEC环境中。这个项目在技术上是具有挑战性的,但不是那么开放,因为关于其解决方案的一般想法刚刚开始出现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tsogtgerel, Gantumur其他文献

ON THE CONSISTENCY OF THE COMBINATORIAL CODIFFERENTIAL

Tsogtgerel, Gantumur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tsogtgerel, Gantumur', 18)}}的其他基金

Analysis of geometric discretization methods
几何离散化方法分析
  • 批准号:
    RGPIN-2020-04389
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of geometric discretization methods
几何离散化方法分析
  • 批准号:
    RGPIN-2020-04389
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
  • 批准号:
    RGPIN-2015-05733
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
  • 批准号:
    RGPIN-2015-05733
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
  • 批准号:
    RGPIN-2015-05733
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
  • 批准号:
    478017-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
  • 批准号:
    RGPIN-2015-05733
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
  • 批准号:
    478017-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
  • 批准号:
    478017-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
  • 批准号:
    RGPIN-2015-05733
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对RS和AG码新型软判决代数译码的研究
  • 批准号:
    61671486
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
  • 批准号:
    11071206
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
  • 批准号:
    10771181
  • 批准年份:
    2007
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
  • 批准号:
    2406732
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
  • 批准号:
    2403239
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
  • 批准号:
    2403833
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Conference: Young Geometric Group Theory XII
会议:年轻几何群理论XII
  • 批准号:
    2404322
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
  • 批准号:
    2337630
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
  • 批准号:
    DP240101772
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Projects
Conference: Riverside Workshop on Geometric Group Theory 2024
会议:2024 年河滨几何群论研讨会
  • 批准号:
    2342119
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Conference: Frontiers of Geometric Analysis
会议:几何分析前沿
  • 批准号:
    2347894
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了