A stochastic chemo-mechanical model for microtubule dynamics on the dimer level: hydrolysis, catastrophes, and regulation

二聚体水平微管动力学的随机化学机械模型:水解、灾难和调节

基本信息

项目摘要

Microtubules are filamentous proteins in the cytoskeleton with a complex dynamical polymerization behavior involving so-called catastrophe and rescue events, which is essential for their biological function, for example during mitosis. This research project is focused on the development and analysis of a stochastic chemo-mechanical model for microtubule dynamics on the dimer level. Hydrolysis of tubulin dimers gives rise to mechanical forces within the microtubule, which are released in catastrophe events, where the microtubule enters a phase of rapid depolymerization and tubulin dimer bending becomes apparent. The theoretical and simulation model will couple these mechanical forces to the chemical kinetics of addition and removal of dimers and, in particular, further hydrolysis events within the microtubule. This latter aspect has not been addressed in the literature so far. Within the chemo-mechanical simulation model, at each time step, the microtubule will be mechanically relaxed and polymerization and hydrolysis events are performed stochastically according to their kinetic rates, which are modulated by mechanical forces. Parameters of the theoretical model will be constrained by available experimental data, for example, for polymerization and depolymerization velocities. Regarding the microtubule mechanics, we will implement and compare the allosteric model, where hydrolysis gives rise to bending of individual tubulin dimers and the lattice model, where hydrolysis weakens the stabilizing lateral bonds between intrinsically bent tubulin dimers. Regarding the chemical kinetics of hydrolysis, we will implement and compare both random hydrolysis order and a vectorial hydrolysis scheme. In particular, we will investigate to what extend the coupling between mechanics and hydrolysis can provide a microscopic model for the initiation of catastrophes, i.e., the transition into a rapid depolymerization phase. Finally, we will use the chemo-mechanical microtubule model to develop theoretical models for the function of microtubule regulating proteins such as stathmin or XMAP215; stathmin is an important microtubule growth inhibitor, whereas XMAP215 increases the MT growth rate. There is evidence, that both proteins couple to the local curvature and, thus, also to the mechanics of the microtubule.
微管是细胞骨架中的丝状蛋白质,具有复杂的动态聚合行为,涉及所谓的灾难和救援事件,这对它们的生物学功能是必不可少的,例如在有丝分裂期间。本研究致力于在二聚体水平上建立和分析微管动力学的随机化学力学模型。微管蛋白二聚体的水解会在微管内产生机械力,在灾难事件中释放出来,此时微管进入快速解聚阶段,微管蛋白二聚体发生明显弯曲。理论和模拟模型将这些机械力耦合到二聚体的添加和移除的化学动力学,特别是微管内的进一步水解事件。到目前为止,文献中还没有提到这后一个方面。在化学-力学模拟模型中,在每个时间步,微管将被机械松弛,聚合和水解事件将根据其受机械力调节的动力学速率随机地进行。理论模型的参数将受到现有实验数据的限制,例如聚合和解聚速度。关于微管力学,我们将实施和比较变构模型和晶格模型,其中水解会引起单个微管蛋白二聚体的弯曲,而晶格模型则会削弱固有弯曲的微管蛋白二聚体之间稳定的侧键。关于水解的化学动力学,我们将实现并比较随机水解序和矢量水解法。特别是,我们将研究力学和水解之间的耦合在多大程度上可以为灾难的开始提供微观模型,即过渡到快速解聚阶段。最后,我们将使用化学机械微管模型来建立微管调节蛋白如stathmin或XMAP215的功能的理论模型;stathmin是一种重要的微管生长抑制因子,而XMAP215则促进MT的生长速度。有证据表明,这两种蛋白质都与局部弯曲相结合,因此也与微管的力学相结合。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bistability and oscillations in cooperative microtubule and kinetochore dynamics in the mitotic spindle
  • DOI:
    10.1088/1367-2630/ab7ede
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Felix Schwietert;J. Kierfeld
  • 通讯作者:
    Felix Schwietert;J. Kierfeld
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jan Kierfeld其他文献

Professor Dr. Jan Kierfeld的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Jan Kierfeld', 18)}}的其他基金

Swimming of deformable microcapsules and droplets
可变形微胶囊和液滴的游动
  • 批准号:
    254831628
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Spatial Organization of cytoskeletal protein networks
细胞骨架蛋白网络的空间组织
  • 批准号:
    212219642
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Semiflexible Polymere in ungeordneten, strukturierten und schaltbaren Potentialen
无序、结构化和可切换电位的半柔性聚合物
  • 批准号:
    200629899
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Development of the Multiscale and Multi-electro-chemo-mechanical Lifecycle Evaluation Method of Impressed Current Cathodic Protection Applied to Reinforced Concrete Structures
钢筋混凝土结构外加电流阴极保护多尺度、多电化学-机械生命​​周期评价方法的发展
  • 批准号:
    23K19134
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Chemo-mechanical modelling of deformation and fracture in biodegradable polymers
可生物降解聚合物变形和断裂的化学机械建模
  • 批准号:
    2887858
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Effect of high temperature on chemo-mechanical degradation of compacted clays intended for the isolation of HLW and SNF
高温对用于隔离 HLW 和 SNF 的压实粘土的化学机械降解的影响
  • 批准号:
    EP/X011577/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Next Generation Electro-Chemo-Mechanical Models for Hydrogen Embrittlement (NEXTGEM)
下一代氢脆电化学机械模型 (NEXTGEM)
  • 批准号:
    EP/V009680/2
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Effect of high temperature on chemo-mechanical degradation of compacted clays intended for the isolation of HLW and SNF
高温对用于隔离 HLW 和 SNF 的压实粘土的化学机械降解的影响
  • 批准号:
    EP/X011569/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
NSF-BSF: Unraveling Link between Interfacial Properties and Chemo-Mechanical Performance of Na-ion Cathode Materials via Surface Modification Approaches
NSF-BSF:通过表面改性方法揭示钠离子阴极材料的界面性质和化学机械性能之间的联系
  • 批准号:
    2321405
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Chemo-physico-mechanical characteristics of corrosion products and their correlation with corrosion control in geothermal environments
地热环境中腐蚀产物的化学物理机械特性及其与腐蚀控制的相关性
  • 批准号:
    2751709
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Chemo-Mechanical Feedback between CAFs, Leader Cells, and the Extracellular Microenvironment Regulates Leader Cell Regulated Collective Cell Migration
CAF、前导细胞和细胞外微环境之间的化学机械反馈调节前导细胞调节集体细胞迁移
  • 批准号:
    10537168
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Next Generation Electro-Chemo-Mechanical Models for Hydrogen Embrittlement (NEXTGEM)
下一代氢脆电化学机械模型 (NEXTGEM)
  • 批准号:
    EP/V009680/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Chemo-Mechanical Coupling in the Erosion of Degradable Polymers
可降解聚合物侵蚀中的化学机械耦合
  • 批准号:
    2029145
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了