Highly efficient porous electrodes of nanocrystalline metal-metalloid-powder coatings through short-time sintering

通过短时间烧结制备纳米晶金属-非金属粉末涂层的高效多孔电极

基本信息

  • 批准号:
    280304894
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2015
  • 资助国家:
    德国
  • 起止时间:
    2014-12-31 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The alkaline electrolysis of water is considered as a key technology for the hydrogen production at large-scale to fulfill a carbon-free energy circle. In order to enhance the efficiency and thereby the economy of such facilities, the consistent further development of all system components and, in particular, the electrode materials and their production processes are needed. In this regard, highly efficient electrodes require a good mechanical stability, a well-defined porous sample surface as well as a high intrinsic electrocatalytic activity. The latter requirement can be obtained by a suitable chemical composition and a nanocrystalline state which exhibits a high density of surface defects. Particularly, amorphous and nanocrystalline Fe- and Ni-base alloys with additives of Co, Mo, Si, B show excellent electrocatalytic activity. In this regard, the short-time sintering technology, spark plasma sintering (SPS/FAST), can be used to manufacture nanocrystalline metallic semi-finished products by saving time and resources. Furthermore, it is established that rough and porous surfaces improve the efficiency of the electrode due to a high active surface area and an optimized management of gas bubbles.In this DFG-project it is planned to utilize the SPS/FAST technology for thin layer coatings with a porous and nanocrystalline structure, which are bonded on a metallic substrate. This offers the opportunity to realize highly efficient, gas-generating electrodes in accordance with the application to be fulfilled. Electrocatalytic active coatings which consist of nanocrystalline metal-metalloid-powders (MMP) with a defined thickness and porosity will be synthesized, which shall combine the advantage of nanocrystalline materials and rough, porous surface structures together with a good mechanical stability. The focus will be the better understanding of the short-time sintering behavior and the evolution of the structural properties of the MMP-coating (grain size, porosity, phase formation and formation of sintering necks), which will be investigated by a systematic variation of the sintering parameters (pressure, temperature, heating rate and holding time). Furthermore, the mechanical stability of the interface between the coating and substrate will be evaluated. Based on this, the electrocatalytic activity as well as the long-term stability of the sintered MMP-coating-substrate-composite in dependence on the structural properties of the MMP-coating will be investigated. From the structural-properties relationship of the MMP-substrate composites valuable conclusions for highly efficient and long-term stable electrode materials for sustainable water electrolysis but also for other electrochemical processes of gas production will be deduced.
碱法电解水被认为是实现无碳能源循环规模化制氢的关键技术。为了提高这些设施的效率,从而提高其经济性,需要不断地进一步开发所有系统部件,特别是电极材料及其生产工艺。在这方面,高效率的电极需要良好的机械稳定性,良好的多孔样品表面以及高的本征电催化活性。后一种要求可以通过合适的化学成分和表现出高密度表面缺陷的纳米晶态来获得。特别是添加了Co、Mo、Si、B等添加剂的非晶态和纳米晶Fe-Ni基合金表现出了良好的电催化活性。在这方面,短时烧结技术--放电等离子烧结(SPS/FAST)可用于制造纳米金属半成品,节省时间和资源。此外,由于具有较高的活性表面积和对气泡的优化管理,粗糙和多孔表面提高了电极的效率。在这个DFG项目中,计划利用SPS/FAST技术来制备具有多孔和纳米晶结构的薄层涂层,这些涂层结合在金属衬底上。这提供了根据要实现的应用来实现高效的气体发生电极的机会。由具有一定厚度和孔隙率的纳米晶金属-类金属粉末组成的电催化活性涂层将结合纳米晶材料和粗糙、多孔表面结构的优点,并具有良好的机械稳定性。重点将是更好地了解基质金属氧化物涂层的短期烧结行为和结构性能的演变(颗粒尺寸、气孔率、相形成和烧结颈的形成),这将通过系统地改变烧结参数(压力、温度、升温速度和保温时间)来研究。此外,还将评估涂层与基材之间界面的机械稳定性。在此基础上,研究了烧结的基质金属氧化物涂层基质复合材料的电催化活性和长期稳定性与基质金属氧化物涂层结构性质的关系。根据基质-基质复合材料的结构-性能关系,将得出对可持续水电解高效、长期稳定的电极材料,以及其他产气的电化学过程有价值的结论。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spark-plasma-sintered porous electrodes for efficient oxygen evolution in alkaline water electrolysis
  • DOI:
    10.1016/j.electacta.2019.05.102
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    T. Rauscher;C. I. Bernäcker;Stefan Loos;M. Vogt;B. Kieback;L. Röntzsch
  • 通讯作者:
    T. Rauscher;C. I. Bernäcker;Stefan Loos;M. Vogt;B. Kieback;L. Röntzsch
Nanocrystalline Fe60Co20Si10B10 as a cathode catalyst for alkaline water electrolysis: Impact of surface activation
  • DOI:
    10.1016/j.electacta.2019.03.107
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Martin Ďurovič;Jaromír Hnát;C. I. Bernäcker;T. Rauscher;L. Röntzsch;M. Paidar;K. Bouzek
  • 通讯作者:
    Martin Ďurovič;Jaromír Hnát;C. I. Bernäcker;T. Rauscher;L. Röntzsch;M. Paidar;K. Bouzek
The effect of Fe as constituent in Ni-base alloys on the oxygen evolution reaction in alkaline solutions at high current densities
  • DOI:
    10.1016/j.ijhydene.2019.01.182
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    T. Rauscher;C. I. Bernäcker;U. Mühle;B. Kieback;L. Röntzsch
  • 通讯作者:
    T. Rauscher;C. I. Bernäcker;U. Mühle;B. Kieback;L. Röntzsch
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Bernd Kieback其他文献

Professor Dr.-Ing. Bernd Kieback的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Bernd Kieback', 18)}}的其他基金

Influence of trace elements with high vacancy binding energy on the precipitation hardening of Al-Cu-alloys
高空位结合能微量元素对Al-Cu合金沉淀硬化的影响
  • 批准号:
    275221441
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Field-activated sintering of metallic materials - experimental study and simulation of mechanisms of matter transport
金属材料的场激活烧结——物质输运机制的实验研究与模拟
  • 批准号:
    262396337
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Untersuchung von fundamentalen Mechanismen des kooperativen Materialtransports beim Sintern metallischer Pulverschüttungen
金属粉末烧结过程中协同材料传输的基本机制研究
  • 批准号:
    167959574
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Untersuchungen zur Aktivierung von rascherstarrten Mg-Ni-Y-Legierungen als Wasserstoffspeichermaterialien
快速凝固Mg-Ni-Y合金储氢材料的活化研究
  • 批准号:
    191209034
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
W/Cu-Gradientenstrukturen für Komponenten mit unmittelbarem Plasmakontakt in Fusionsreaktoren
聚变反应堆中直接等离子体接触部件的钨/铜梯度结构
  • 批准号:
    36207724
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Entwicklung verschleißfester nanokristalliner und dispersionsverfestigter Titanwerkstoffe für Implantate
植入用耐磨纳米晶和弥散强化钛材料的开发
  • 批准号:
    5409937
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Gradientenwerkstoffe aus Komponenten mit stark unterschiedlichen Schmelzpunkten
由熔点差异很大的成分制成的梯度材料
  • 批准号:
    5241774
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Highly Selective and Efficient Enzymatic Degradation Catalysis by Immobilizing Protocatechuate 3,4-Dioxygenase in Mesoporous Silica
通过在介孔二氧化硅中固定原儿茶酸 3,4-双加氧酶开发高选择性和高效的酶降解催化
  • 批准号:
    20K05506
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a concentrated electrolytic oxidation technique using porous complex crystals for highly efficient degradation of dilute pollutants in water
开发利用多孔复合晶体高效降解水中稀污染物的浓缩电解氧化技术
  • 批准号:
    20K12225
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Highly porous 3-dimensional aeromaterials for energy-efficient, ultra-fast and selective gas sensors
用于高效节能、超快速和选择性气体传感器的高多孔三维航空材料
  • 批准号:
    423187260
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Design of Biomimetic Porous Coordination Polymers Realizing Antenna Effects and Highly Efficient Multi-electron Oxidation
实现天线效应和高效多电子氧化的仿生多孔配位聚合物的设计
  • 批准号:
    18K14305
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design of Highly Efficient Porous Hybrid Catalysts for Solar-Converted Fuels and Environmental Applications
用于太阳能转化燃料和环境应用的高效多孔杂化催化剂的设计
  • 批准号:
    283234-2013
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Design of Highly Efficient Porous Hybrid Catalysts for Solar-Converted Fuels and Environmental Applications
用于太阳能转化燃料和环境应用的高效多孔杂化催化剂的设计
  • 批准号:
    283234-2013
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Design of Highly Efficient Porous Hybrid Catalysts for Solar-Converted Fuels and Environmental Applications
用于太阳能转化燃料和环境应用的高效多孔杂化催化剂的设计
  • 批准号:
    283234-2013
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
UNS: Three-Dimensional Porous Nanographene for Highly Efficient Energy Storage in Li-Ion Batteries
UNS:用于锂离子电池高效储能的三维多孔纳米石墨烯
  • 批准号:
    1511528
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Design of Highly Efficient Porous Hybrid Catalysts for Solar-Converted Fuels and Environmental Applications
用于太阳能转化燃料和环境应用的高效多孔杂化催化剂的设计
  • 批准号:
    283234-2013
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Design of Highly Efficient Porous Hybrid Catalysts for Solar-Converted Fuels and Environmental Applications
用于太阳能转化燃料和环境应用的高效多孔杂化催化剂的设计
  • 批准号:
    283234-2013
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了