Highly porous 3-dimensional aeromaterials for energy-efficient, ultra-fast and selective gas sensors
用于高效节能、超快速和选择性气体传感器的高多孔三维航空材料
基本信息
- 批准号:423187260
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of the project is to investigate novel, energy-efficient, ultrafast and selective gas sensors based on lightweight framework materials (densities of ~ 2 mg/cm³) made of carbon nanomaterials (e.g. graphene, CNTs, graphene oxide, graphite) with macroscopic expansions (> cm³) and free volumes of over 99.99 %. The basis for the development of these gas sensors lies in the already very successful work on the aeromaterial "Aerographit", a macroscopic framework structure consisting of a large number of interconnected hollow graphitic microtubes with nanoscopic (< 50 nm) wall thickness. The unique framework structure of these aeromaterials results in a relatively large (~ 100 m²/g) surface, which is especially accessible for gases. At the same time, the very large free and open-pored volume allows the flow of gases through this framework structure. The unique micro- and nanostructure of the aeromaterials simultaneously results in a very low heat capacity. This enables extremely fast heating and cooling rates (> 400 K/s) in large volumes (> cm³) to temperatures of up to 500 °C in fractions of a second with low electrical power consumption (< 10 W). Such high temperatures lead to a significant increase in reactivity and thus in the sensitivity of gas sensors. Based on the combination of these properties and the already known high gas sensitivities of carbon nanomaterials novel gas sensors will be developed in this project. The focus of the project is the acquisition of a comprehensive understanding of the physical and chemical relationships and their influence on the gas sensor characteristics of aeromaterials. In particular, the influence of different structural parameters (e.g. wall thickness, density, material type, etc.) as well as the effects of different functionalizations (e.g. incorporation of nanoparticles as receptors/catalysts) on the properties of the gas sensors will be investigated in detail. A further focus is on a more detailed understanding of the growth process of such scaffold-based aeromaterials, which allows a targeted adaptation of the properties to achieve optimal performance and selectivity in gas sensor technology. Furthermore, the thermal-electrical behaviour and the gas flow properties of aeromaterials will be studied extensively. Moreover, innovative measurement methods for gas detection based on the high heating and cooling rates will be developed.
该项目的目的是研究新型、节能、超快和选择性气体传感器,该传感器基于由碳纳米材料(例如石墨烯、CNT、氧化石墨烯、石墨)制成的轻质框架材料(密度约为2 mg/cm³),宏观膨胀(> cm³)和自由体积超过99.99%。开发这些气体传感器的基础在于对航空材料“Aerographit”已经非常成功的工作,Aerographit是一种宏观框架结构,由大量互连的中空石墨微管组成,具有纳米级(< 50 nm)壁厚。这些航空材料独特的骨架结构导致相对较大的表面(约100 m²/g),特别适合气体。同时,非常大的自由和开孔体积允许气体流过该框架结构。航空材料独特的微米和纳米结构同时导致非常低的热容。这使得大体积(> cm³)的加热和冷却速度(> 400 K/s)能够在几分之一秒内达到高达500 °C的温度,并且耗电量低(< 10 W)。这样的高温导致反应性的显著增加,从而导致气体传感器的灵敏度的显著增加。基于这些特性和碳纳米材料已知的高气敏性的组合,本项目将开发新型气体传感器。该项目的重点是全面了解物理和化学关系及其对航空材料气敏特性的影响。特别地,不同结构参数(例如,壁厚、密度、材料类型等)的影响被考虑。以及不同功能化(例如,引入纳米颗粒作为受体/催化剂)对气体传感器性能的影响将被详细研究。进一步的重点是更详细地了解这种基于支架的航空材料的生长过程,这允许有针对性地调整性能,以实现气体传感器技术的最佳性能和选择性。此外,航空材料的热电行为和气体流动特性将得到广泛的研究。此外,还将开发基于高加热和冷却速率的气体检测创新测量方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Rainer Adelung其他文献
Professor Dr. Rainer Adelung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Rainer Adelung', 18)}}的其他基金
Magnetoelectric sensors based on magnetostrictive and organic hybrid-composites
基于磁致伸缩和有机混合复合材料的磁电传感器
- 批准号:
269909779 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Piezotronic effects in freestanding microcomposites
独立式微复合材料中的压电效应
- 批准号:
269936415 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
High-performance and lightweight Graphene-CFRP tank for storage of compressed Hydrogen for aerospace applications
高性能轻质石墨烯-CFRP 储罐,用于存储航空航天应用的压缩氢气
- 批准号:
279121074 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Structure, properties, and growth mechanisms of three-dimensional graphite networks (aerographite)
三维石墨网络(气石墨)的结构、性能和生长机制
- 批准号:
271608950 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Memristive and memsensor devices for filament free sparse CNT networks
用于无细丝稀疏 CNT 网络的忆阻和忆传感器器件
- 批准号:
261986642 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Units
Differential analysis of the role of surface properties and cellular uptake of metal oxides in their nanoform for their cytocompatibility by means of synthesized micro-nanostructures
通过合成微纳米结构,差异分析纳米形式金属氧化物的表面性质和细胞摄取对其细胞相容性的作用
- 批准号:
235690182 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Electrochemical and microstructural analysis of the processes occurring in Si microwire-array anodes (and full-cells) for high capacity Lithium ion batteries
高容量锂离子电池硅微线阵列阳极(和全电池)过程的电化学和微观结构分析
- 批准号:
236979258 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Interdisziplinäre anwendungsnahe Forschung mit nanostrukturierten Materialien
纳米结构材料的跨学科应用导向研究
- 批准号:
35921152 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Heisenberg Professorships
Fabrication and characterization of functional nanowire and tube based devices
功能性纳米线和管基器件的制造和表征
- 批准号:
5428822 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Priority Programmes
Korrelation von Metallwachstum auf molekularen organischen Halbleitern und elektronischen Eigenschaften
分子有机半导体金属生长与电子性能的相关性
- 批准号:
5404021 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
多孔Ti-MSNs@MGF+DX抗炎—成肌体系应用于颞下颌关节假体的作用和机制研究
- 批准号:82370984
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
LIPUS响应的弹性石墨烯多孔导管促进神经再生及其机制研究
- 批准号:82370933
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
均匀纳米孔低介电材料的可控制备研究
- 批准号:90606011
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:重大研究计划
相似海外基金
Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
- 批准号:
DP240100961 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
- 批准号:
10749330 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: Adaptive Mixed-Dimensional Modeling and Simulation of Porous Media
协作研究:多孔介质的自适应混合维建模与仿真
- 批准号:
2208267 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Injectable Hydrogel Depots for Self-replicating mRNA Vaccine Delivery
用于自我复制 mRNA 疫苗递送的可注射水凝胶库
- 批准号:
10664048 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative Research: Adaptive Mixed-Dimensional Modeling and Simulation of Porous Media
协作研究:多孔介质的自适应混合维建模与仿真
- 批准号:
2208249 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10552623 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10420701 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Injectable Hydrogel Depots for Self-replicating mRNA Vaccine Delivery
用于自我复制 mRNA 疫苗递送的可注射水凝胶库
- 批准号:
10438409 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Develop manganese-containing porous scaffolds with vasculature-like channels for potential applications in craniofacial bone regeneration
开发具有类血管通道的含锰多孔支架,在颅面骨再生中具有潜在应用
- 批准号:
10514798 - 财政年份:2022
- 资助金额:
-- - 项目类别: