Arrangements with symmetries
对称排列
基本信息
- 批准号:280581905
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Arrangements of hyperplanes play a central role in many areas of mathematics. This proposal has two major goals: to understand the structure of the special simplicial arrangements of hyperplanes, including classifications, and to apply the results to construct a counterexample to the longstanding conjecture of Terao.The classification of a large subclass of the class of simplicial arrangements defined by a certain integrality condition, the so-called crystallographic arrangements, was achieved recently by Heckenberger and the applicant in a series of papers. This was a fundamental result for the theory of Nichols algebras, but meanwhile it is clear that it will have an even greater impact on discrete geometry. The first goal of this proposal is to use similar techniques to prove bounds for the larger class of finite reflection groupoids reducing their classification to a finite problem. An enumeration using further symmetries will provide a classification in dimension three which will be extended to arbitrary dimensions subsequently.The most recent breakthrough towards disproving Terao's conjecture is the counterexample by Hoge and the applicant to the closely related conjecture that free arrangements are recursively free in characteristic zero. The construction of this example is based on a simplicial arrangement. Using the results of the first part, we will produce a database of free arrangements which are not inductively free. The emerging patterns should expose infinite series and eventually allow to classify the set of potential counterexamples completely.Combining representation theory, computational enumerations, and traditional methods of geometry is an approach to these problems which has not been attempted before and is very promising.
超平面的排列在数学的许多领域起着核心作用。这个建议有两个主要目标:理解超平面的特殊简单排列的结构,包括分类,并应用结果来构建一个反例,以证明Terao的长期猜想。最近,Heckenberger和申请人在一系列论文中实现了由一定完整性条件定义的简单排列类的一个大子类的分类,即所谓的晶体排列。这是尼科尔斯代数理论的一个基本结果,但同时很明显,它将对离散几何产生更大的影响。本建议的第一个目标是使用类似的技术来证明更大类有限反射群的界,将它们的分类简化为有限问题。使用进一步对称的枚举将提供三维的分类,随后将扩展到任意维度。在反驳Terao猜想方面,最近的突破是Hoge和另一个密切相关的猜想的应用的反例,即自由排列在特征零点是递归自由的。这个例子的构造基于一个简单的安排。利用第一部分的结果,我们将生成一个非归纳自由排列的自由排列数据库。出现的模式应该暴露无限级数,并最终允许对潜在的反例集进行完全分类。将表示理论、计算枚举和传统的几何方法相结合是解决这些问题的一种方法,这是以前没有尝试过的,也是很有前途的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supersolvable simplicial arrangements
超可解的简单安排
- DOI:10.1016/j.aam.2019.02.008
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Michael Cuntz;Paul Mücksch
- 通讯作者:Paul Mücksch
(224) and (264) Configurations of Lines
(224)和(264)线路配置
- DOI:10.26493/1855-3974.1402.733
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Michael Cuntz
- 通讯作者:Michael Cuntz
On the Tits cone of a Weyl groupoid
在外尔群胚的山雀锥上
- DOI:10.1080/00927872.2019.1617873
- 发表时间:2019
- 期刊:
- 影响因子:0.7
- 作者:Michael Cuntz;Bernhard Mühlherr;Christian J. Weigel
- 通讯作者:Christian J. Weigel
On the combinatorics of Tits arrangements
关于 Tits 排列的组合数学
- DOI:10.15488/3483
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:David Geis
- 通讯作者:David Geis
Arrangements of ideal type are inductively free
理想类型的排列是无感应的
- DOI:10.1142/s0218196719500267
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Michael Cuntz;Gerhard Roehrle;Anne Schauenburg
- 通讯作者:Anne Schauenburg
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Cuntz其他文献
Professor Dr. Michael Cuntz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Cuntz', 18)}}的其他基金
Arrangements of complex reflection groups: Geometry and combinatorics
复反射群的排列:几何与组合学
- 批准号:
239469709 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Priority Programmes
Combinatorial and geometric structures for reflection groups and groupoids
反射群和群形的组合和几何结构
- 批准号:
239354514 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Priority Programmes
Affine Nichols algebras of diagonal type and modular tensor categories
对角型和模张量范畴的仿射尼科尔斯代数
- 批准号:
219514727 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
REU Site: Research in Symmetries at the University of Kentucky
REU 网站:肯塔基大学对称性研究
- 批准号:
2349261 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
- 批准号:
DP240101772 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
- 批准号:
2339682 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Characterization of Systematic Effects in Ultracold Neutron Tests of Fundamental Symmetries
基本对称性超冷中子测试中系统效应的表征
- 批准号:
2310015 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
- 批准号:
2247202 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Low-energy Nuclear Physics and Fundamental Symmetries with Neutrons and Cryogenic Technologies
职业:低能核物理以及中子和低温技术的基本对称性
- 批准号:
2232117 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Polymorphism in the symmetries of gastric pouch arrangements in the sea anemone Diadumene lineata
海葵胃袋排列对称性的多态性
- 批准号:
22KJ3132 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




