Learning Latent Dynamic Bayesian Networks from High Dimensional InterventionEffects and Applications in Systems Biology

从高维干预效应和系统生物学应用中学习潜在动态贝叶斯网络

基本信息

项目摘要

Structure learning of causal Dynamic Bayesian Networks (DBNs) is relevant in many application domains, including medicine and systems biology. Accordingly, different methods have been proposed to learn DBNs from interventional data. So far little attention has been paid to situations in which the network of interest cannot be observed directly, but only through its effects on a layer of observable variables. The need for these models arises in systems biology, where protein signaling networks can often not be measured directly, but the response of thousands of molecular species to perturbations, like gene knock-downs, can be recorded cheaply.The aim of this project is to establish a general framework for structure learning of hidden DBNs from static and time series perturbation data, which is practically applicable to this situation. Our goal will require a realistic probabilistic modeling of signal propagation in a network of hidden variables. Moreover, we will investigate intervention schemes which account for uncertainty and simultaneous targeting of multiple hidden variables. A major task is the development and implementation of an efficient structure learning algorithm for our model, which allows for application to data sets of realistic size that appear, for instance, in systems biology.We will validate our approach in extensive simulations and use it for structure learning of biological networks from experimental data. We expect that our method will significantly improve the automated reconstruction of such networks and thus improve their causal understanding. Our work might impact other scientific domains as well, in which causal inference of unobservable variables is of relevance, e.g. psychology or sociology.
因果动态贝叶斯网络(DBN)的结构学习在许多应用领域都有意义,包括医学和系统生物学。因此,已经提出了不同的方法来从介入数据学习DBN。到目前为止,很少有人注意到这样的情况,即感兴趣的网络不能直接观察到,而只能通过它对一层可观察变量的影响来观察。系统生物学中出现了对这些模型的需求,其中蛋白质信号网络通常无法直接测量,但可以廉价地记录数千个分子物种对基因敲除等扰动的反应。该项目的目的是建立一个通用框架,用于从静态和时间序列扰动数据中对隐藏DBN进行结构学习,该框架实际上适用于这种情况。我们的目标将需要一个现实的隐变量网络中的信号传播的概率建模。此外,我们将研究干预计划,占不确定性和同时瞄准多个隐藏变量。一个主要的任务是为我们的模型开发和实现一个有效的结构学习算法,它允许应用到现实大小的数据集,例如,在系统biology.We将验证我们的方法在广泛的模拟和使用它的结构学习的生物网络从实验数据。我们希望我们的方法将显着提高此类网络的自动重建,从而提高对因果关系的理解。我们的工作也可能影响其他科学领域,其中不可观察变量的因果推理是相关的,例如心理学或社会学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Achim Tresch, since 1/2016其他文献

Professor Dr. Achim Tresch, since 1/2016的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Estimation of spectral properties for discovery of latent structures in dynamic graphs
估计光谱特性以发现动态图中的潜在结构
  • 批准号:
    2904452
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Identification and Estimation of Dynamic Restricted Latent Class Models for Cognitive Diagnosis
用于认知诊断的动态受限潜在类别模型的识别和估计
  • 批准号:
    2150628
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Simulation-based Methods for Large Dynamic Latent Variable Models with Unobserved Heterogeneity
具有不可观测异质性的大动态潜变量模型的基于仿真的方法
  • 批准号:
    RGPIN-2020-04161
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-based Methods for Large Dynamic Latent Variable Models with Unobserved Heterogeneity
具有不可观测异质性的大动态潜变量模型的基于仿真的方法
  • 批准号:
    RGPIN-2020-04161
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Simulation-based Methods for Large Dynamic Latent Variable Models with Unobserved Heterogeneity
具有不可观测异质性的大动态潜变量模型的基于仿真的方法
  • 批准号:
    RGPIN-2020-04161
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Latent Factor Representations of Dynamic Networks in Cyber-Security
网络安全中动态网络的潜在因素表示
  • 批准号:
    1943891
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
CHRONIC TUBERCULOSIS--LATENT OR DYNAMIC
慢性结核病——潜伏性或动态性
  • 批准号:
    6124215
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
Chronic Tuberculosis: Latent or Dynamic
慢性结核病:潜伏性或动态性
  • 批准号:
    7386651
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
Chronic Tuberculosis: Latent or Dynamic
慢性结核病:潜伏性或动态性
  • 批准号:
    7054084
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
CHRONIC TUBERCULOSIS--LATENT OR DYNAMIC
慢性结核病——潜伏性或动态性
  • 批准号:
    6294685
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了