A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
基本信息
- 批准号:EP/Y021614/1
- 负责人:
- 金额:$ 38.17万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Glioma is a type of aggressive brain tumor that has varying survival rates. In surgical operations, it can be difficult to strike a balance between reducing the risk of recurrence and preserving brain function. This is mainly due to the fact that manual tumor delineation is subjective, labor-intensive, and varies among practitioners, leading to unreliable segmentation and high recurrence rates. Therefore, there is an urgent need for reliable and automated tumor segmentation tools to assist surgeons in achieving an optimal balance between cancer control and functional preservation, reducing the time and resources spent by doctors, and providing quantitative data for future analysis. However, current automated segmentation approaches, including deep learning techniques, can be limited by the use of a deterministic boundary to delineate the tumor-infiltrating area, which can be problematic in cases with high uncertainty.Therefore, the aim of this project is to develop a novel statistical machine learning approach that utilises partially labelled clinical information for more informative and accountable pre-surgery decision making in brain tumour resection. This new method is expected to provide more informative and nuanced guidance to surgeons, enhancing their ability to plan the surgery accurately, reducing the risk of tumour recurrence while preserving function and reliability. The new approach is expected to be generalised to other types of MRI-based cancer diagnostics and have the potential to significantly advance AI powered tumour resection and improve patient outcomes.The research has two streams of beneficiaries: (i) A large community of UK and international clinical surgeons that conduct brain tumor resection in traditional ways. The outcomes of this project would assist the pre-operative decision making for tumor resection, and substantially improve thousands of patients' quality of life after surgery, therefore achieve significant socioeconomic impact. (ii) A large community of UK and international clinical academics/professionals who work on MRI-based tumor research. The novel statistical machine learning tool and idea generated by this project will be more widely applicable to other types of MRI-based cancer diagnostics and delineations. This will assist further investigation of accountable AI techniques for image-based tumor surgery. A number of activities have been carefully designed to effectively engage with beneficiaries of this research. These activities include co-production and validation of knowledge with clinical academics, publishing of the results in leading academic journals/conferences, publicize up-to-date project advances and share open-source software on GitHub, and a workshop with field specialists and national academic and non-academic stakeholders in MRI-based tumor surgery.
神经胶质瘤是一种侵袭性脑肿瘤,具有不同的存活率。在外科手术中,很难在降低复发风险和保护脑功能之间取得平衡。这主要是由于手动肿瘤勾画是主观的、劳动密集型的,并且在从业者之间变化,导致不可靠的分割和高复发率。因此,迫切需要可靠和自动化的肿瘤分割工具,以帮助外科医生在癌症控制和功能保护之间实现最佳平衡,减少医生花费的时间和资源,并为未来的分析提供定量数据。然而,当前的自动分割方法(包括深度学习技术)可能受到使用确定性边界来描绘肿瘤浸润区域的限制,这在具有高不确定性的情况下可能是有问题的。该项目的目的是开发一种新的统计机器学习方法,该方法利用部分标记的临床信息,以提供更多信息和更负责任的预处理。脑肿瘤切除术中的手术决策。这种新方法有望为外科医生提供更多信息和细致入微的指导,提高他们准确计划手术的能力,降低肿瘤复发的风险,同时保留功能和可靠性。这项新方法有望推广到其他类型的基于MRI的癌症诊断,并有可能显著推进人工智能驱动的肿瘤切除术,改善患者预后。该研究有两个受益者:(i)英国和国际临床外科医生的大型社区,他们以传统方式进行脑肿瘤切除术。该项目的结果将有助于术前做出肿瘤切除的决策,并大大改善数千名患者术后的生活质量,从而产生重大的社会经济影响。(ii)一个由英国和国际临床学者/专业人士组成的大型社区,他们从事基于MRI的肿瘤研究。该项目产生的新型统计机器学习工具和想法将更广泛地应用于其他类型的基于MRI的癌症诊断和描述。这将有助于进一步研究基于图像的肿瘤手术的负责任AI技术。为了有效地与这项研究的受益者接触,精心设计了一些活动。这些活动包括与临床学者共同制作和验证知识,在领先的学术期刊/会议上发表结果,在GitHub上宣传最新的项目进展并分享开源软件,以及与领域专家和国家学术和非学术利益相关者在基于MRI的肿瘤手术中举办研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xi Chen其他文献
simulations and application to daily streamflow processes
模拟及其在日常水流过程中的应用
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Wen Wang;P. Gelder;J. Vrijling;Xi Chen - 通讯作者:
Xi Chen
An Investigation to the Industry 4.0 Readiness of Manufacturing Enterprises: The Ongoing Problems of Information Systems Strategic Misalignment
制造企业工业4.0准备情况调查:信息系统战略错位的持续问题
- DOI:
10.4018/jgim.291515 - 发表时间:
2021-11 - 期刊:
- 影响因子:4.7
- 作者:
Guochao Peng;Si Chen;Xi Chen;Caihua Liu - 通讯作者:
Caihua Liu
Climate change and quality of health care: evidence from extreme heat
气候变化与医疗保健质量:极端高温的证据
- DOI:
10.1016/s0140-6736(19)32430-4 - 发表时间:
2019-10 - 期刊:
- 影响因子:0
- 作者:
Yafei Si;Zhongliang Zhou;Min Su;Xi Chen - 通讯作者:
Xi Chen
Research of optical rectification in surface layers of germanium
锗表层光学整流研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.5
- 作者:
Li Zhang;Fangye Li;Shuai Wang;Qi Wang;Kairan Luan;Xi Chen;Xiuhuan Liu;Lingying Qiu;Zhanguo Chen;Jihong Zhao;Lixin Hou;Yanjun Gao;Gang Jia - 通讯作者:
Gang Jia
Membrane gas dehydration in a pressure-electric coupled field
压力-电耦合场中的膜气体脱水
- DOI:
10.1016/j.memsci.2015.07.019 - 发表时间:
2015-11 - 期刊:
- 影响因子:9.5
- 作者:
Xianshe Feng;Yanfen Li;Yufeng Zhang;Xi Chen - 通讯作者:
Xi Chen
Xi Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xi Chen', 18)}}的其他基金
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
Collaborative Research: Water-responsive, Shape-shifting Supramolecular Protein Assemblies
合作研究:水响应、变形超分子蛋白质组装体
- 批准号:
2304959 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
CAREER: Programmable Negative Water Adsorption of Bioinspired Hygroscopic Materials
职业:仿生吸湿材料的可编程负吸水
- 批准号:
2238129 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
CAREER: Understanding the Size Effects on Spin-mediated Thermal Transport in Nanostructured Quantum Magnets
职业:了解纳米结构量子磁体中自旋介导的热传输的尺寸效应
- 批准号:
2144328 - 财政年份:2022
- 资助金额:
$ 38.17万 - 项目类别:
Continuing Grant
CAREER: Model-Free Input Screening and Sensitivity Analysis in Simulation Metamodeling
职业:仿真元建模中的无模型输入筛选和敏感性分析
- 批准号:
1846663 - 财政年份:2019
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
S&AS: INT: Traffic Deconfliction for Smart and Autonomous Unmanned Aircraft Systems in Congested Environments
S
- 批准号:
1849300 - 财政年份:2019
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
CAREER: A Sequential Learning Framework with Applications to Learning from Crowds
职业:顺序学习框架及其在群体学习中的应用
- 批准号:
1845444 - 财政年份:2019
- 资助金额:
$ 38.17万 - 项目类别:
Continuing Grant
SusChEM: Chemoenzymatic Methods for Efficient Synthesis of Glycolipids
SusChEM:高效合成糖脂的化学酶法
- 批准号:
1300449 - 财政年份:2013
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
CAREER: Bridging Game Theory, Economics and Computer Science: Equilibria, Fixed Points, and Beyond
职业:连接博弈论、经济学和计算机科学:均衡、不动点及其他
- 批准号:
1149257 - 财政年份:2012
- 资助金额:
$ 38.17万 - 项目类别:
Continuing Grant
Chemoenzymatic methods for automated carbohydrate synthesis
自动碳水化合物合成的化学酶法
- 批准号:
1012511 - 财政年份:2010
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
相似海外基金
Monitoring and auditing of AI in clinical practice - radiotherapy contour quality assurance
临床实践中人工智能的监测和审核——放疗轮廓质量保证
- 批准号:
10072915 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Grant for R&D
Achieved through Contour Engineering to Improve Tolerance (FACE-IT)
通过轮廓工程提高耐受性 (FACE-IT)
- 批准号:
2889020 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Studentship
Contour tracking control in position domain: principle, development, and application
位置域轮廓跟踪控制:原理、发展与应用
- 批准号:
RGPIN-2016-04527 - 财政年份:2022
- 资助金额:
$ 38.17万 - 项目类别:
Discovery Grants Program - Individual
Human and machine perception of 2D and 3D shape from contour
人类和机器从轮廓感知 2D 和 3D 形状
- 批准号:
RGPIN-2022-04533 - 财政年份:2022
- 资助金额:
$ 38.17万 - 项目类别:
Discovery Grants Program - Individual
Improvement of flexion finger angles' estimation accuracy by instructional learning of finger contour line information
通过手指轮廓线信息的指导学习提高屈指角度的估计精度
- 批准号:
21K17867 - 财政年份:2021
- 资助金额:
$ 38.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Contour tracking control in position domain: principle, development, and application
位置域轮廓跟踪控制:原理、发展与应用
- 批准号:
RGPIN-2016-04527 - 财政年份:2021
- 资助金额:
$ 38.17万 - 项目类别:
Discovery Grants Program - Individual
Making temperature-pressure contour map of sound wave relaxation strength of liquid water - toward verification of liquid-liquid phase transition scenario
绘制液态水声波弛豫强度的温度-压力等值线图——以验证液-液相变场景
- 批准号:
20K03789 - 财政年份:2020
- 资助金额:
$ 38.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Contour tracking control in position domain: principle, development, and application
位置域轮廓跟踪控制:原理、发展与应用
- 批准号:
RGPIN-2016-04527 - 财政年份:2019
- 资助金额:
$ 38.17万 - 项目类别:
Discovery Grants Program - Individual
Getting a Grip on Object Shape: Grasp points in space or magnitude from contour?
掌握物体形状:从轮廓中掌握空间中的点或大小?
- 批准号:
487969-2016 - 财政年份:2019
- 资助金额:
$ 38.17万 - 项目类别:
Postdoctoral Fellowships
RF Propagation Contour Mapping
射频传播等值线映射
- 批准号:
529578-2018 - 财政年份:2018
- 资助金额:
$ 38.17万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)














{{item.name}}会员




