Vector Spectral Functions from First Principles

第一原理中的矢量谱函数

基本信息

项目摘要

No abstract available
没有摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Nils Strodthoff其他文献

Professor Dr. Nils Strodthoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
  • 批准号:
    LTGY23H220001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于spectral集和spectral拓扑若干问题研究
  • 批准号:
    11661057
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
  • 批准号:
    11473055
  • 批准年份:
    2014
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目

相似海外基金

Stieltjes Functions and Spectral Analysis in Sea Ice Physics
海冰物理中的 Stieltjes 函数和光谱分析
  • 批准号:
    2206171
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A new paradigm for spectral localisation of operator pencils and analytic operator-valued functions
算子铅笔谱定位和解析算子值函数的新范式
  • 批准号:
    EP/T000902/1
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
  • 批准号:
    RGPIN-2014-04087
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
  • 批准号:
    RGPIN-2014-04087
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Geodesics, extension of holomorphic functions and the spectral theory of multioperators
测地线、全纯函数的扩展和多算子谱理论
  • 批准号:
    EP/N03242X/1
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
  • 批准号:
    RGPIN-2014-04087
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
  • 批准号:
    RGPIN-2014-04087
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
  • 批准号:
    RGPIN-2014-04087
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Non-equilibrium dynamics and single-particle spectral functions in low-dimensional fermion systems
低维费米子系统中的非平衡动力学和单粒子谱函数
  • 批准号:
    229060624
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Asymptoic theory of the spectral functions of one-dimensional second order differential operators and its applications to diffusion processes
一维二阶微分算子谱函数的渐近理论及其在扩散过程中的应用
  • 批准号:
    24540110
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了