Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
基本信息
- 批准号:RGPIN-2014-04087
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometry is about measurement of shapes, and spaces in general. Through classical differential geometry we have learned how to measure distances and volumes, as well as the curvature of a given space in all dimensions. How to define and compute the curvature of a noncommutative space? A noncommutative space is a much more complicated modern analogue of a classical space. Chaotic and fuzzy character of these new types of spaces, specially lack of classical points, renders almost all of the classical methods useless. Ideas from spectral geometry and quantum mechanics, namely information about a space encoded in the spectrum of its natural geometric operators like Dirac and Laplacian gives a clue as to how to proceed in the NC case. The celebrated Weyl's law on the asymptotic distribution of eigenvalues of the Hodge-de Rham Laplacian of a closed Riemannian manifold in terms of its volume is the first result of this kind. In general the short time asymptotic expansion of the trace of the heat kernel gives an infinite sequence of spectral invariants. Borrowing words of Marc Kac: one can hear the dimension, volume and scalar curvature.
The essence of this situation is axiomatized by Alain Connes in noncommutative geometry (NCG) under the concept of spectral triple. With enough regularity condition spectral triples can be thought of as noncommutative spin Riemannian manifolds. Before 2010, no real computation of curvature in a curved NC space was known or seemed feasible.
For the first time after more than 30 years into NCG, in the past 4 years we (and independently and simulataneously Connes and Moscovici) were able to obtain a formula for the curvature of a curved NC
2-d torus. We (Fathizadeh-Khalkhali) have also obtained a formula for the scalar curvature of a NC curved 4-d torus. These are formidable formulas which in no way can be obtained by deforming the classical curvature formulas. This is achieved by evaluating the value of the (analytic continuation of the)
spectral zeta functional \zeta_a(s) := Trace(a \Delta-s) at s = 0. A new purely noncommutative feature here is the appearance
of the modular automorphism group from the theory of type III von Neumann factors and quantum statistical mechanics in the final formula for curvature. A byproduct is a Gauss-Bonnet theorem for NC 2-d torus. Other tools like Connes' trace theorem, and a noncommutative Wodzicki residue has been also obtained by us. A totally fresh and unchartered territory is now opened with so many open and interesting fundamental problems waiting to be studied.
I am planning to build upon the breakthroughs I had in the last 4 years and continue my research in understanding the curved geometry of noncommutative spaces. This includes:
Constructing new noncommutative Riemannian manifolds, finding the NC Gauss-Bonnet density in dimension 4, computing the scalar curvature and Gauss-Bonnet theorem of noncommutative toroidal orbifolds, extending my Riemann-Roch theorem to all holomorphic line bundles on noncommutative 2-torus, verifying Chamseddine-Connes conjectures for spectral action for Robertson-Walker metrics, proving the conformal invariance of the eta invariant for noncommutative 3-torus, conceptual understanding of our curvature formula (it is extremely important to understand at a more conceptual level the amazing cancellations that occur in our calculations with noncommutative pseudodifferential symbols, and why at the end thousands of terms cancel), establishing higher order corrections to our Weyl's law for NC curved tori (analogue of Hormander's celebrated theorem),
finding new examples of noncommutative Einstein manifolds, study of quantum Yang-Mills theory on noncommutative 4-torus.
几何学是关于形状的测量,以及一般的空间测量。通过经典的微分几何,我们已经学会了如何测量距离和体积,以及给定空间在所有维度上的曲率。如何定义和计算非对易空间的曲率?非对易空间是经典空间的一种更为复杂的现代类比。这些新型空间的混沌和模糊特性,特别是缺乏经典的点,使得几乎所有的经典方法都无用。来自谱几何和量子力学的想法,即关于一个空间的信息,编码在它的自然几何算子的谱中,如狄拉克和拉普拉斯,给出了如何在NC情况下进行的线索。著名的关于闭黎曼流形的Hodge-de Rham Laplace算子的本征值关于其体积的渐近分布的Weyl定律是此类结果的第一个结果。一般来说,热核迹的短时渐近展开给出了一个无限的谱不变量序列。借用马克·卡克的话:人们可以听到尺寸、体积和标量曲率。
这种情况的本质是由Alain Connes在非对易几何(NCG)中在谱三元组的概念下公理化的。在足够的正则性条件下,谱三元组可视为非对易自旋黎曼流形。在2010年前,曲面NC空间中的曲率的实际计算是未知的或似乎是可行的。
在进入NCG 30多年后,在过去的4年里,我们(以及独立和同时的Connes和Moscovici)第一次能够获得曲线NC的曲率公式
2-D环面。我们(Fathizadeh-Khalkhali)也得到了NC曲线4维环面的标量曲率公式。这些都是令人敬畏的公式,不可能通过变形经典的曲率公式来获得。这是通过评估(的解析延续)的价值来实现的。
光谱Zeta泛函Zeta_a(S):=迹(a\Delta-S)在S=0。这里的一个新的纯粹非对易的特征是外观
从第三类冯·诺依曼因子和量子统计力学的理论出发,得出了模自同构群的曲率的最终公式。一个副产品是Nc二维环面的Gauss-Bonnet定理。我们还得到了诸如Connes迹定理、非对易Wodzicki留数等工具。现在,一个全新的、未知的领域打开了,有如此多开放和有趣的基本问题等待研究。
我计划在过去四年中取得的突破的基础上,继续我的研究,了解非对易空间的曲线几何。这包括:
构造了新的非对易黎曼流形,求出了4维的NC Gauss-Bonnet密度,计算了非对易环面的标量曲率和Gauss-Bonnet定理,将我的Riemann-Roch定理推广到非对易2-环面上的所有全纯线丛,验证了Robertson-Walker度规的谱作用的Chamseddine-Connes猜想,证明了非对易3-环面的ETA不变量的共形不变性,对我们的曲率公式的概念性理解(在更概念的水平上理解我们的计算中发生的惊人的取消是非常重要的,以及为什么在数千项末尾取消),为NC曲线环面(类似霍曼德著名定理)建立我们的Weyl定律的高阶修正,
寻找非对易爱因斯坦流形的新例子,研究非对易4环面上的量子杨-米尔斯理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khalkhali, Masoud其他文献
Khalkhali, Masoud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khalkhali, Masoud', 18)}}的其他基金
Spectral Invariants of Noncommutative Spaces
非交换空间的谱不变量
- 批准号:
RGPIN-2019-04748 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Spectral Invariants of Noncommutative Spaces
非交换空间的谱不变量
- 批准号:
RGPIN-2019-04748 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Spectral Invariants of Noncommutative Spaces
非交换空间的谱不变量
- 批准号:
RGPIN-2019-04748 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Spectral Invariants of Noncommutative Spaces
非交换空间的谱不变量
- 批准号:
RGPIN-2019-04748 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Hopf cyclic cohomology, twisted local index formula, and noncommutative complex geometry
Hopf 循环上同调、扭曲局部指数公式和非交换复几何
- 批准号:
184060-2009 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Hopf cyclic cohomology, twisted local index formula, and noncommutative complex geometry
Hopf 循环上同调、扭曲局部指数公式和非交换复几何
- 批准号:
184060-2009 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
离散分析-分形和图上的分析及其应用
- 批准号:11271011
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
共形几何与液晶问题中的偏微分方程
- 批准号:11201223
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Spectral Shape Optimization: Extremality and Curvature
谱形优化:极值和曲率
- 批准号:
2246537 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Curvature flows and spectral estimates.
曲率流和谱估计。
- 批准号:
FT130101102 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
ARC Future Fellowships
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Research on a support system for generating comfortable hand-drawn like curves
舒适手绘曲线支撑系统研究
- 批准号:
15500068 - 财政年份:2003
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Solutions to Partial Differential Equations, Variational problems and Inverse. Problems
偏微分方程、变分问题和逆问题的解的研究。
- 批准号:
11640175 - 财政年份:1999
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Constant Mean Curvature Surfaces / Isoparametric Spectral Geometry
数学科学:恒定平均曲率曲面/等参谱几何
- 批准号:
8800414 - 财政年份:1988
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Probabilistic and Spectral Properties of Weighted Riemannian Manifolds with Kato-bounded Bakry-Emery-Ricci Curvature
具有 Kato 有界 Bakry-Emery-Ricci 曲率的加权黎曼流形的概率和谱特性
- 批准号:
442045221 - 财政年份:
- 资助金额:
$ 1.68万 - 项目类别:
Priority Programmes