Design of crystallisation-inhibited polymer networks for absorption and storage of high mechanical impacts

用于吸收和存储高机械冲击的结晶抑制聚合物网络的设计

基本信息

项目摘要

Spiders use draglines as safety-lines in the event of a fall as well as for catching fast flying insects. Such draglines are capable of absorbing and dissipating tremendous amounts of kinetic energy. So far there is no synthetic material that matches these mechanical characteristics of spider dragline silk.The goal of this project is the design of a synthetic material that is capable of mimicking the mechanical properties of spider draglines with regard to its kinetic energy absorption. We propose that this is achievable by a material that transforms itself from an amorphous, rubber-like into a highly crystalline, high-modulus state upon stretching to large elongations and retains the latter after removing the stretching force. To avoid misunderstandings: This proposal is not about spider silk but deals with a synthetic material with high kinetic energy absorption capability. Cold-programmable shape memory polymers (SMPs) are promising candidates to meet the corresponding requirements. Thus we will focus on the preparation, characterization and optimization of novel crystallization-inhibited polymer networks that stay amorphous at room temperature and crystallize strain-induced upon deformation. First satisfactory results could be acquired from preliminary works on shape memory natural rubber (SMNR) and shape memory polyethylene (SMPE). In this project, SMPs based on natural rubber will be optimized and novel networks based on polymers like syndiotactic polypropylene (sPP) and polyisobutylene (PIB) will be prepared that allow large strains, large crystallinity, and crystallization-rates in order to maximize the energy absorption capacity and minimize the elastic rebound.
蜘蛛使用拖丝作为坠落时的安全绳,也用来捕捉快速飞行的昆虫。这种拉铲能够吸收和耗散巨大的动能。到目前为止,还没有合成材料能够匹配蜘蛛拖丝的这些机械特性。本项目的目标是设计一种合成材料,该材料能够模仿蜘蛛拖丝在动能吸收方面的机械特性。我们提出,这是可以实现的材料,将自己从一个无定形的,橡胶状到一个高度结晶,高模量的状态下拉伸到大的伸长率,并保留后者后,消除拉伸力。为了避免误解:这个建议不是关于蜘蛛丝,而是关于一种具有高动能吸收能力的合成材料。冷编程形状记忆聚合物(SMP)是有希望的候选人,以满足相应的要求。因此,我们将专注于制备,表征和优化的新型结晶抑制聚合物网络,在室温下保持无定形和结晶应变诱导变形。在形状记忆天然橡胶(SMNR)和形状记忆聚乙烯(SMPE)的前期工作中,首次获得了令人满意的结果。在该项目中,将优化基于天然橡胶的SMP,并将制备基于间同立构聚丙烯(sPP)和聚异丁烯(PIB)等聚合物的新型网络,这些网络允许大应变,大结晶度和结晶速率,以最大限度地提高能量吸收能力并最大限度地减少弹性反弹。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shock- and Energy-Absorption Capability of Cold-Programmable Shape Memory Polymers
冷可编程形状记忆聚合物的冲击和能量吸收能力
  • DOI:
    10.1002/macp.201800274
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    T. Raidt;P. Santhirasegaran;R. Hoeher;J.C. Tiller;F. Katzenberg
  • 通讯作者:
    F. Katzenberg
Crosslinking of Semiaromatic Polyesters toward High-Temperature Shape Memory Polymers with Full Recovery.
  • DOI:
    10.1002/marc.201700768
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Thomas Raidt;Martin Schmidt;J. C. Tiller;F. Katzenberg
  • 通讯作者:
    Thomas Raidt;Martin Schmidt;J. C. Tiller;F. Katzenberg
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jörg Tiller其他文献

Professor Dr. Jörg Tiller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Jörg Tiller', 18)}}的其他基金

Bioaktive Polymersysteme mit antimikrobiellen Eigenschaften
具有抗菌特性的生物活性聚合物系统
  • 批准号:
    5382890
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Development and optimization of crystallization-inhibited polymer networks for strain-induced switching from entropy- to energy-elastic behavior
结晶抑制聚合物网络的开发和优化,用于应变诱导从熵弹性行为到能量弹性行为的转换
  • 批准号:
    535472234
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Quantifying molecular interactions linking disordered and ordered phases to predict crystallisation
量化连接无序相和有序相的分子相互作用以预测结晶
  • 批准号:
    EP/Z00005X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
PharmaCrystNet: Improving the Predictive Capabilities of Crystallisation Models in Pharma
PharmaCrystNet:提高制药领域结晶模型的预测能力
  • 批准号:
    EP/Z533014/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Constraining the style of magma-ocean crystallisation by present-day Earth structure: a coupled thermodynamic-geodynamic approach
当前地球结构限制岩浆-海洋结晶的方式:热力学-地球动力学耦合方法
  • 批准号:
    NE/X000508/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Sustainable Transformation and Recovery of Energy and Ammonia using Membrane Crystallisation (STREAM-C)
使用膜结晶可持续转化和回收能源和氨 (STREAM-C)
  • 批准号:
    EP/X037045/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Advancing antisolvent membrane crystallisation
推进反溶剂膜结晶
  • 批准号:
    2880828
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding crystallisation processes in metal oxides
了解金属氧化物的结晶过程
  • 批准号:
    2897568
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Integrated Crystallisation Facility
综合结晶设施
  • 批准号:
    LE230100156
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Crystallisation optimisation and control using surrogate modelling and adaptive model predictive control
使用代理建模和自适应模型预测控制进行结晶优化和控制
  • 批准号:
    2746484
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Crystallisation in crowded media
在拥挤的媒体中结晶
  • 批准号:
    2778137
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Membrane distillation-crystallisation for the production of carbon neutral lithium in the UK
英国采用膜蒸馏-结晶法生产碳中性锂
  • 批准号:
    10034921
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了