PharmaCrystNet: Improving the Predictive Capabilities of Crystallisation Models in Pharma

PharmaCrystNet:提高制药领域结晶模型的预测能力

基本信息

  • 批准号:
    EP/Z533014/1
  • 负责人:
  • 金额:
    $ 19.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The pharmaceutical industry plays a pivotal role in delivering life-saving medicines to people worldwide. However, the process of making these medicines is often lengthy, costly, and environmentally unsustainable, taking up to 10 years and costing £2Bn and generating up to 100 Kg of waste for every Kg of product. A crucial and ubiquitous step in developing the process of achieving pure, high quality drug substances is crystallisation, where solid drug particles are formed by nucleation and growth from solution. These fundamental process steps are highly unpredictable, sensitive to many parameters and a detailed mechanistic understanding at the molecular scale remains elusive. Developing useful predictive tools to guide the design of this step would have a significant impact with the potential to reduce the cost, time, resources, and waste involved in the design, scale-up and implementation of sustainable manufacturing processes.Current methods used for model-based design of crystallisation processes are not always accurate, failing to capture significant and commonly encountered phenomena such as polymorphism, agglomeration or fouling. This project will change that by blending cutting-edge hybrid machine learning and physics-based computing techniques with our understanding of chemistry and chemical processes.PharmaCrystNet will revolutionise the way we understand and predict crystallisation in drug manufacturing. It aims to:1) Develop a detailed understanding of the molecular attributes of drug molecules that dictate crystallisation outcomes2) Develop a new hybrid/ML/mechanistic/physics-informed computer model that can predict crystallisation outcomes under a wide range of industrially relevant process conditions at different scales with high accuracy3) Test, refine, and validate the model using real-world experiments.This new model will enable:1) Faster drug production from a 30% reduction in development time, meaning new medicines reach patients more quickly2) Huge cost savings in the drug manufacturing process, leading to lower drug prices3) A significant reduction in the environmental footprint of drug production from a 70-80% reduction in material used during development, making the industry more sustainable.By perfecting the crystallisation process, we will propel the pharmaceutical industry into a new era of efficiency and sustainability in generating engineered materials that will deliver further benefits for streamlined efficient downstream drug formulation operations. This project holds promise not just for medicine manufacturers and other specialty chemical manufacturers, but for patients, the environment, and the global community at large.
制药行业在为全球人提供挽救生命的药物方面发挥了关键作用。但是,制作这些药物的过程通常是漫长,昂贵且在环境上不可持续的,最多需要10年的时间,并且每千克产品的产品耗资200亿英镑,并产生多达100公斤的废物。在开发实现纯高品质药物的过程中,至关重要且无处不在的步骤是结晶,在该过程中,固体药物颗粒是由成核和溶液生长形成的。这些基本过程步骤是高度可预测的,对许多参数敏感,并且在分子尺度上的详细机械理解仍然难以捉摸。开发有用的预测工具来指导这一步骤的设计将产生重大影响,从而有可能降低具有可持续制造过程的设计,扩展和实施的成本,时间,资源和浪费。用于基于模型的结晶过程设计的现行方法并不总是准确,不总是准确,无法捕捉到重要的现象和常见的现象,例如Polymorphist,carlymphormphlist或fue un。该项目将通过将尖端混合机器学习和基于物理的计算技术与我们对化学和化学过程的理解相结合来改变这种情况。Pharmacrystnet将彻底改变我们理解和预测药物制造中的结晶方式。它的目的是:1)对决定结晶结果的药物分子特性的详细了解2)开发一种新的混合/ML/ML/Magical/Physics/Physics Imformed计算机模型,该模型可以预测在与高准确性的不同范围内使用新模型的不同范围的范围的模型,可预测在各种工业相关的过程中的结晶效果。更快的药物生产从减少30%的开发时间,这意味着新药物更快地到达患者2)在药物制造过程中节省巨大的成本,导致降低药品价格3)药物生产的环境足迹从开发过程中使用的材料的70-80%减少了70-80%的环境足迹,从而使该行业更具可持续性,从而使材料的效率变得更加可持续。简化有效的下游药物配方奶粉操作的进一步好处。该项目不仅对医学制造商和其他专业化学制造商有望,还适用于患者,环境和全球社区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cameron Brown其他文献

The Efficacy and Safely of Anticoagulation for the Management of Gonadal Vein Thrombosis
  • DOI:
    10.1182/blood-2023-189554
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Cameron Brown;Sarah Ng;Farah Zarka;Aurélien Delluc;Marc Carrier
  • 通讯作者:
    Marc Carrier
The Safety and Efficacy of Anticoagulation for the Management of Isolated Distal Deep Vein Thrombosis in Patients with Cancer
  • DOI:
    10.1182/blood-2022-170865
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Cameron Brown;Willem Brandt;Tzu-Fei Wang;Aurelien Delluc;Marc Carrier
  • 通讯作者:
    Marc Carrier
Investigating and Prosecuting Cyber Crime: Forensic Dependencies and Barriers to Justice
调查和起诉网络犯罪:取证依赖性和司法障碍
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cameron Brown
  • 通讯作者:
    Cameron Brown
Comparative studies of powder flow predictions using milligrams of powder for identifying powder flow issues
  • DOI:
    10.1016/j.ijpharm.2022.122309
  • 发表时间:
    2022-11-25
  • 期刊:
  • 影响因子:
  • 作者:
    Tong Deng;Vivek Garg;Laura Pereira Diaz;Daniel Markl;Cameron Brown;Alastair Florence;Michael S.A. Bradley
  • 通讯作者:
    Michael S.A. Bradley
A Study of Cervical Cytology on Pap Smears with Positive High-risk Human Papillomavirus (hrHPV) Tests with Non-HPV 16/18/45 Subtypes
  • DOI:
    10.1016/j.jasc.2023.07.034
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jennifer Addo;Cameron Brown
  • 通讯作者:
    Cameron Brown

Cameron Brown的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
  • 批准号:
    12305261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
利用风云极轨卫星微波资料同化改进东北冷涡暴雨预报
  • 批准号:
    42375004
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
面向超级计算机的改进粒子群算法在大规模WSN中的应用研究
  • 批准号:
    62372495
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于云聚类的气溶胶-云相互作用模式评估改进研究
  • 批准号:
    42375073
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
智能互联产品动态质量过程控制与迭代改进方法研究
  • 批准号:
    72371183
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目

相似海外基金

Evaluating Policy Solutions Aimed at Improving Hospice Care Access in Rural Areas
评估旨在改善农村地区临终关怀服务的政策解决方案
  • 批准号:
    10555012
  • 财政年份:
    2023
  • 资助金额:
    $ 19.07万
  • 项目类别:
Improving Prediction of Asthma-related Outcomes with Genetic Ancestry-informed Lung Function Equations
利用遗传祖先信息的肺功能方程改善哮喘相关结果的预测
  • 批准号:
    10723861
  • 财政年份:
    2023
  • 资助金额:
    $ 19.07万
  • 项目类别:
CAREER: Improving educators' trust in and effective uses of predictive learning analytics to support students
职业:提高教育工作者对预测学习分析的信任并有效利用它来支持学生
  • 批准号:
    2237593
  • 财政年份:
    2023
  • 资助金额:
    $ 19.07万
  • 项目类别:
    Continuing Grant
Improving Prognostication for Traumatic Brain Injury
改善创伤性脑损伤的预后
  • 批准号:
    10643695
  • 财政年份:
    2023
  • 资助金额:
    $ 19.07万
  • 项目类别:
Improving Healthcare Quality and Equity For Older Adults with HIV Under Value-Based Care Models
在基于价值的护理模式下提高艾滋病毒感染者的医疗质量和公平性
  • 批准号:
    10762522
  • 财政年份:
    2023
  • 资助金额:
    $ 19.07万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了