Lipschitz Integers for Coded Modulation and Precoding

用于编码调制和预编码的 Lipschitz 整数

基本信息

项目摘要

Signal constellations are an important ingredient for digital transmission systems, directly determining their performance. Therefore, constellations have been constructed and analyzed for many years, where for instance different constellations can be compared with the constellation figure of merit introduced by Forney and Wei. Besides two-dimensional constellations, immediately motivated by QAM signaling, already at early stages higher-dimensional approaches, in particular four-dimensional signal sets, have been of interest due to their higher flexibility. Nowadays, four-dimensional signal constellations are of increasing interest in optical communications.More recently, one of the applicants found that constellations constructed by partitioning of Lipschitz integers have a figure of merit which is up to 10 dB better than the comparable two-dimensional QAM constellations [FS15]. These remarkable gains are only observed for special subsets of Lipschitz integers and not for Lipschitz integers themselves. However, until now only some examples exist and a careful analysis and study of these constellations is necessary. Therefore, we propose to analyze novel four-dimensional constructions in this project. Noteworthy, the most important classical two-dimensional constellations can be interpreted as special subsets of Lipschitz integers which might lead to a novel theory for constellations. Furthermore, methods from coded modulation constellations might help to construct even better constellations. Coded modulation based on the new constellations can improve wired, wireless, and optical communication systems. In addition, advanced equalization and precoding techniques, in particular those based on the concepts of lattice reduction and its tightly related approach of integer forcing, are based on algebraic operations and thus Lipschitz integers and their partitioning are well suited for novel methods. Thus, we expect many interesting results for the improvement of future coding and modulation for any type of digital communication system with complex-valued signal constellations.
信号星座图是数字传输系统的重要组成部分,直接决定其性能。因此,星座已经被构造和分析了很多年,其中例如不同的星座可以与由Forney和Wei引入的星座品质因数进行比较。除了直接由QAM信令激发的二维星座之外,在早期阶段,更高维的方法,特别是四维信号集,由于其更高的灵活性而受到关注。最近,申请人之一发现,通过分割Lipschitz整数构造的星座具有比可比较的二维QAM星座好10 dB的品质因数[FS 15]。这些显着的收益只观察到特殊子集的Lipschitz整数,而不是Lipschitz整数本身。然而,到目前为止,只有一些例子存在,仔细分析和研究这些星座是必要的。因此,我们建议在这个项目中分析新颖的四维结构。值得注意的是,最重要的经典二维星座可以被解释为Lipschitz整数的特殊子集,这可能会导致一个新的星座理论。此外,编码调制星座的方法可能有助于构建更好的星座。基于新星座的编码调制可以改善有线、无线和光通信系统。此外,高级均衡和预编码技术,特别是基于格约简的概念及其紧密相关的整数强制方法的技术,是基于代数运算的,因此Lipschitz整数及其划分非常适合于新颖的方法。因此,我们期待许多有趣的结果,为未来的编码和调制的任何类型的数字通信系统与复值信号星座的改进。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-Density Parity-Check Codes over Finite Gaussian Integer Fields
有限高斯整数域上的低密度奇偶校验码
Generalized Multistream Spatial Modulation With Signal Constellations Based on Hurwitz Integers and Low-Complexity Detection
基于 Hurwitz 整数和低复杂度检测的信号星座的广义多流空间调制
  • DOI:
    10.1109/lwc.2017.2780092
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    J. Freudenberger;D. Rohweder;S. Shavgulidze
  • 通讯作者:
    S. Shavgulidze
Quaternion-Valued Multi-User MIMO Transmission via Dual-Polarized Antennas and QLLL Reduction
Coded modulation using a 512-ary Hurwitz-integer constellation
使用 512 进制 Hurwitz 整数星座的编码调制
Low-Complexity Detection for Generalized Multistream Spatial Modulation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Robert Fischer其他文献

Professor Dr.-Ing. Robert Fischer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Robert Fischer', 18)}}的其他基金

Multi-Valued Physical Unclonable Functions
多值物理不可克隆函数
  • 批准号:
    401330297
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Iterative Signal Recovery Algorithms --- A Unified View of Turbo and Message-Passing Approaches
迭代信号恢复算法——Turbo 和消息传递方法的统一视图
  • 批准号:
    404179757
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Low-Complexity Radio Frontends and Noncoherent Detection for Massive MIMO
用于大规模 MIMO 的低复杂度无线电前端和非相干检测
  • 批准号:
    289265954
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Discrete-Valued Sparse Signals: Theory, Algorithms, and Applications
离散值稀疏信号:理论、算法和应用
  • 批准号:
    257184199
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coding, Modulation and Detection for Power-Efficient Low-Complexity Impulse-Radio Ultra-Wideband Transmissions Systems (CoMoDe IR-UWB)
高能效低复杂度脉冲无线电超宽带传输系统的编码、调制和检测 (CoMoDe IR-UWB)
  • 批准号:
    78190126
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Spitzenwertreduktionsverfahren für die MIMO-OFDM Punkt-zu-Punkt- und Punkt-zu-Mehrpunkt-Übertragung
MIMO-OFDM点对点和点对多点传输的峰值降低方法
  • 批准号:
    25637076
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Generalized Shaping and Precoding for Flexible Adaptation in Dynamic Optical Networks
动态光网络灵活适应的广义整形和预编码
  • 批准号:
    310620038
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modulo-Based Coding for Distributed Sources
分布式源的基于模的编码
  • 批准号:
    510837578
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

LEAPS-MPS: Number-Theoretic and Combinatorial Properties of Increasing Sequences of Positive Integers
LEAPS-MPS:正整数递增序列的数论和组合性质
  • 批准号:
    2316986
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Integers Conference 2020
2020年整数会议
  • 批准号:
    2228511
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Normal numbers and the multiplicative structure of integers
正规数和整数的乘法结构
  • 批准号:
    RGPIN-2020-04285
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Beta expansions of algebraic integers
代数整数的 Beta 展开式
  • 批准号:
    562635-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Normal numbers and the multiplicative structure of integers
正规数和整数的乘法结构
  • 批准号:
    RGPIN-2020-04285
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Normal numbers and the multiplicative structure of integers
正规数和整数的乘法结构
  • 批准号:
    RGPIN-2020-04285
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Integers Conference 2020
2020年整数会议
  • 批准号:
    2022199
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Parallel Algorithms in Support of Factorization of Polynomials and Integers
支持多项式和整数因式分解的并行算法
  • 批准号:
    539741-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Arithmetic Structure in the Integers and Higher-Order Fourier Analysis
整数的算术结构和高阶傅立叶分析
  • 批准号:
    487479-2016
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Homomorphisms from words to the integers and the Diophantine problem of Frobenius
从词到整数的同态和 Frobenius 的丢番图问题
  • 批准号:
    526029-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了