Iterative Signal Recovery Algorithms --- A Unified View of Turbo and Message-Passing Approaches
迭代信号恢复算法——Turbo 和消息传递方法的统一视图
基本信息
- 批准号:404179757
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last years, plenty of signal recovery algorithms for compressed sensing have been devised. The most effective are those based on iterative processing, specifically IHT and AMP and its variants. Basically, two different philosophies of iterative processing can be distinguished: the Turbo principle and the message passing principle. In Turbo schemes, information is passed between (typically) two blocks; the processing within each component is done jointly over each signal block (vector). Conversely, message passing utilizes a graphical model with (typically) a huge number of nodes. Information is passed between all connected nodes (elements of the vector); the processing is done locally in each node. Hence, the global view in Turbo processing compares with the local view in message passing.Even though AMP is derived from the MP view, the final algorithm can be better categorized under the Turbo principle. Very recently proposed signal recovery approaches like TSR, OAMP, VAMP, and IMS immediately follow the Turbo principle. Both worlds show striking similarities but also significant differences. A unified view of these algorithms is missing in the literature.The main objective of this proposal is to bring the Turbo and MP world closer together. The common principles and fundamental differences have to be worked out. Via a thorough analysis and categorization of the diverse variants meanwhile available, a deeper understanding shall be developed. Thereby, we are more interested in the engineering perspective rather than the large-system analysis and mathematical view; the algorithms and concepts should be reinterpreted and understood from the engineering perspective. The question of other partitionings of the problem to be solved into two subproblems over which iteration is done will be addressed. Thereby the tradeoff between performance and complexity is of particular interest. The efficiency of the different algorithms in applications from digital communications will be studied. Although analysis and synthesis will be done throughout for real-valued and discrete-valued sparse signals, stronger focus will be put on demands (e.g., no perfect recovery is required or possible) and performance measures (e.g., bit error rates) for the intended applications.
在过去的几年里,人们已经设计出了许多用于压缩感知的信号恢复算法。最有效的是那些基于迭代处理的方法,特别是IHT和AMP及其变种。基本上,迭代处理可以区分两种不同的原理:Turbo原理和消息传递原理。在Turbo方案中,信息在(通常)两个块之间传递;每个组件内的处理在每个信号块(矢量)上联合完成。相反,消息传递使用(通常)具有大量节点的图形模型。信息在所有连接的节点(向量的元素)之间传递;处理在每个节点本地完成。因此,Turbo处理中的全局视图与消息传递中的局部视图进行了比较。虽然AMP是从MP视图派生出来的,但最终的算法在Turbo原则下可以更好地归类。最近提出的信号恢复方法,如TSR、OAMP、VAMP和IMS立即遵循Turbo原则。这两个世界既有惊人的相似之处,也有显著的差异。文献中缺乏对这些算法的统一看法。这项提议的主要目标是使Turbo和MP世界更紧密地联系在一起。必须找出共同原则和根本区别。通过对现有各种变种的透彻分析和分类,将形成更深层次的理解。因此,我们更感兴趣的是工程的观点,而不是大系统分析和数学的观点;算法和概念应该从工程的角度重新解释和理解。将解决问题的其他划分为两个子问题的问题,在这些子问题上进行迭代。因此,性能和复杂性之间的权衡是特别重要的。将研究不同算法在数字通信应用中的效率。尽管将始终对实值和离散值稀疏信号进行分析和综合,但将更加关注预期应用的需求(例如,不需要或不可能进行完美恢复)和性能测量(例如,误码率)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Robert Fischer其他文献
Professor Dr.-Ing. Robert Fischer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Robert Fischer', 18)}}的其他基金
Multi-Valued Physical Unclonable Functions
多值物理不可克隆函数
- 批准号:
401330297 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Lipschitz Integers for Coded Modulation and Precoding
用于编码调制和预编码的 Lipschitz 整数
- 批准号:
289275110 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Low-Complexity Radio Frontends and Noncoherent Detection for Massive MIMO
用于大规模 MIMO 的低复杂度无线电前端和非相干检测
- 批准号:
289265954 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Discrete-Valued Sparse Signals: Theory, Algorithms, and Applications
离散值稀疏信号:理论、算法和应用
- 批准号:
257184199 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Coding, Modulation and Detection for Power-Efficient Low-Complexity Impulse-Radio Ultra-Wideband Transmissions Systems (CoMoDe IR-UWB)
高能效低复杂度脉冲无线电超宽带传输系统的编码、调制和检测 (CoMoDe IR-UWB)
- 批准号:
78190126 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Priority Programmes
Spitzenwertreduktionsverfahren für die MIMO-OFDM Punkt-zu-Punkt- und Punkt-zu-Mehrpunkt-Übertragung
MIMO-OFDM点对点和点对多点传输的峰值降低方法
- 批准号:
25637076 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Priority Programmes
Generalized Shaping and Precoding for Flexible Adaptation in Dynamic Optical Networks
动态光网络灵活适应的广义整形和预编码
- 批准号:
310620038 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Modulo-Based Coding for Distributed Sources
分布式源的基于模的编码
- 批准号:
510837578 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
- 批准号:81601856
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: Signal Recovery Beyond Minimization: A Monotone Inclusion Framework
CIF:小:超越最小化的信号恢复:单调包含框架
- 批准号:
2211123 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
CIF: Small: Robust Signal Recovery and Grant-Free Access for Massive IoT Connectivity
CIF:小型:强大的信号恢复和无授权访问大规模物联网连接
- 批准号:
2009001 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Fast and Robust Algorithms for Signal Recovery from Underdetermined Measurements: Generalized Sparse Fourier Transforms, Inverse Problems, and Density Estimation
用于从欠定测量中恢复信号的快速稳健算法:广义稀疏傅里叶变换、反演问题和密度估计
- 批准号:
1912706 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Signal Recovery from Generative Priors
职业:从生成先验中恢复信号
- 批准号:
1848087 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Speech signal recovery using an optimized multi-channel adaptive noise canceller based on bone- and air-conducted measurements
使用基于骨导和气导测量的优化多通道自适应噪声消除器恢复语音信号
- 批准号:
18K04175 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CBMS Conference: Sparse Approximation and Signal Recovery Algorithms
CBMS 会议:稀疏逼近和信号恢复算法
- 批准号:
1642586 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
CIF: Small: The Interplay Between Convex Feasibility Problems and Minimization Problems in Signal Recovery
CIF:小:信号恢复中凸可行性问题和最小化问题之间的相互作用
- 批准号:
1715671 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
CIF: Medium: Signal representation, sampling and recovery on graphs
CIF:中:图形上的信号表示、采样和恢复
- 批准号:
1563918 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
A study of stochastic hierarchical convex optimization algorithms and their applications to signal recovery
随机分层凸优化算法及其在信号恢复中的应用研究
- 批准号:
15H06197 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Timing Recovery for Orthogonal Frequency Division Multiple Access (OFDMA) Upstream Cable Signal
正交频分多址 (OFDMA) 上行电缆信号的定时恢复
- 批准号:
453660-2013 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Industrial Postgraduate Scholarships