Discrete-Valued Sparse Signals: Theory, Algorithms, and Applications

离散值稀疏信号:理论、算法和应用

基本信息

项目摘要

Over the last decade, compressed sensing (CS) has gained enormous attention, both from a theoretical point of view and from its various applications. The key point in compressed sensing is to solve underdetermined systems of linear equations under the assumption that the unknown vector is sparse, i.e., a signal where only a few non-zero components are present.It is very attractive to use ideas and tools developed in compressed sensing in digital communications. Exemplary scenarios are transmitter-side signal optimization (e.g., peak-to-average power ratio reduction), multiple-access schemes with small duty cycles, source coding schemes, and radar applications. However, in these scenarios the vector/the signal to be recovered (from noisy measurements) may not only be sparse, but it is beneficial that its elements are taken from a discrete set. Hence, discrete sparse signals are extremely relevant in digital communication systems and signal processing. Unfortunately, such signals and the respective recovery algorithms are not yet studied adequately---if at all---in the literature.Consequently, this proposal addresses the application of compressed sensing methodology to the analysis of discrete-valued sparse signals. Effort has to be spent to fundamentally understand the problem from the mathematical side. To this end, we aim to develop a comprehensive theory for the recovery of discrete sparse signals, both from a geometric viewpoint and by adopting analytical results and tools. Moreover, we devise tailored recovery algorithms, thereby interpreting discrete compressed sensing as a link between classical compressed sensing and a multiple-input/multiple-output decoding task. Finally, the application of discrete sparse signals in communications, sensor networks, and for the identification of channel operators will be addressed.
在过去的十年中,压缩感知(CS)已经获得了巨大的关注,无论是从理论的角度来看,并从其各种应用。压缩感知的关键是在未知向量稀疏的假设下求解欠定线性方程组,即,在数字通信中使用压缩感知中开发的思想和工具是非常有吸引力的。示例性场景是发射机侧信号优化(例如,峰均功率比降低)、具有小占空比的多址方案、信源编码方案和雷达应用。然而,在这些场景中,要恢复的矢量/信号(从噪声测量)可能不仅是稀疏的,而且其元素取自离散集合是有益的。因此,离散稀疏信号在数字通信系统和信号处理中是极其相关的。不幸的是,这样的信号和相应的恢复算法尚未充分研究-如果在所有-在literation.Consequently,这个建议解决了应用压缩感知方法的离散值稀疏信号的分析。要从数学的角度从根本上理解这个问题,必须付出努力。为此,我们的目标是开发一个全面的理论,从几何的角度来看,并通过采用分析结果和工具的离散稀疏信号的恢复。此外,我们设计了量身定制的恢复算法,从而解释离散压缩传感之间的联系,经典的压缩传感和多输入/多输出解码任务。最后,将讨论离散稀疏信号在通信、传感器网络和信道运营商识别中的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Robert Fischer其他文献

Professor Dr.-Ing. Robert Fischer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Robert Fischer', 18)}}的其他基金

Multi-Valued Physical Unclonable Functions
多值物理不可克隆函数
  • 批准号:
    401330297
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Iterative Signal Recovery Algorithms --- A Unified View of Turbo and Message-Passing Approaches
迭代信号恢复算法——Turbo 和消息传递方法的统一视图
  • 批准号:
    404179757
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Lipschitz Integers for Coded Modulation and Precoding
用于编码调制和预编码的 Lipschitz 整数
  • 批准号:
    289275110
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Low-Complexity Radio Frontends and Noncoherent Detection for Massive MIMO
用于大规模 MIMO 的低复杂度无线电前端和非相干检测
  • 批准号:
    289265954
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coding, Modulation and Detection for Power-Efficient Low-Complexity Impulse-Radio Ultra-Wideband Transmissions Systems (CoMoDe IR-UWB)
高能效低复杂度脉冲无线电超宽带传输系统的编码、调制和检测 (CoMoDe IR-UWB)
  • 批准号:
    78190126
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Spitzenwertreduktionsverfahren für die MIMO-OFDM Punkt-zu-Punkt- und Punkt-zu-Mehrpunkt-Übertragung
MIMO-OFDM点对点和点对多点传输的峰值降低方法
  • 批准号:
    25637076
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Generalized Shaping and Precoding for Flexible Adaptation in Dynamic Optical Networks
动态光网络灵活适应的广义整形和预编码
  • 批准号:
    310620038
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modulo-Based Coding for Distributed Sources
分布式源的基于模的编码
  • 批准号:
    510837578
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Locally Driven Approaches to Valued Pedagogies: A Comparative Study between Eastern and Western Africa and Latin America
本地驱动的有价值的教学法:东西非和拉丁美洲之间的比较研究
  • 批准号:
    22KK0207
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
A numerical method to solve matrix-valued differential inequalities with applications in dynamical systems
求解矩阵值微分不等式的数值方法及其在动力系统中的应用
  • 批准号:
    2889464
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Bio-derived and Bio-inspired Advanced Materials for Sustainable Industries (VALUED)
用于可持续工业的生物衍生和仿生先进材料(VALUED)
  • 批准号:
    EP/W031019/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Memory Impedance for Efficient Complex-valued Neural Networks
高效复值神经网络的内存阻抗
  • 批准号:
    EP/X018431/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Travel: Model Theory of Valued Fields at CIRM
旅行:CIRM 有价值领域的模型理论
  • 批准号:
    2322918
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Sustainable low carbon cell-based platform for scale-up production of high-valued materials for personal care and biopharmaceuticals
基于可持续低碳细胞的平台,用于扩大个人护理和生物制药高价值材料的生产
  • 批准号:
    10059364
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Launchpad
Studies of those scholar-monks who valued the Mulasarvastivada-vinaya according to the wishes of Kukai
依空海遗愿重视根本说一切有部戒律的儒生研究
  • 批准号:
    22K00065
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SOVA (Supporting Our Valued Adolescents) Peer Ambassador Program Pilot Study, Enhancing Resiliency in Low-Resource Youth
SOVA(支持我们有价值的青少年)同伴大使计划试点研究,增强资源匮乏青少年的复原力
  • 批准号:
    10552601
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Model Theory of Valued Differential Fields
值微分场模型论
  • 批准号:
    2154086
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了